Bài 1 : Cho tam giác ABC vuông tại A (AB < AC) có đường cao AH (H thuộc BC)
a) Chứng minh: ABC∽HBA
b)Chứng minh: AH^2 = BH . CH
1. Cho tam giác ABC vuông tại A(AB<AC) có đường cao AH. Biết BC = 25cm, AH = 12cm. Tính AB, AC, BH, CH
2. Cho tam giác ABC vuồng tại A, đường cao AH. Biết AB = 15cm, HC = 16cm. Tính AC, BC, AH, BH
Cho tam giác ABC vuông tại A. Kẻ đường cao Ah a chứng minh tam giác ABC đồng dạng với tam giác HBA b,AB^2=BH*BC c, AH*BC=AB*AC
cho tam giác ABC vuông tại a đường cao AH a) chứng minh tam giác ABC ~ tam giác HBA từ đó suy ra AB^2=BH .BC b) cho BH=4cm CH=9cm tính AH,AB c) gọi F điểm tùy ý trên AC, đường thẳng qua H vuông góc HF cắt cạnh AB tại E chứng minh AE . CH=AH . FC d) xác định vị trí của F trên AC để đoạn FE có độ dài ngắn nhất
tam giác abc vuông tại a có đường cao AH. gọi m trung điểm BC. chứng minh AB^2.CH=AC^2.BH
Đề hình học là: cho tam giác ABC vuông tại A đường cao AH. AB= 3 AC=4 BC =5. Câu a chứng minh tam giác AHB đồng dạng với tam giác ABC. Câu b tính AH. Câu c chứng minh AB^2= BH×BC
cho tam giác ABC vuông tại A vẽ đường cao AH,H thuốc BC.biết AB=6cm,AC= 8cm a. chứng minh tam giác HBA đồng dạng với với tam giác ABC b. tính BC,AH,BH c. kẻ HI vuông góc với AC tại I chứng minh HC^2=IC*AC
Cho Tam giác ABC vuông tại A (AB < AC), đường cao AH. a) Chứng minh Tam giác HBA ~ tam giác ABC b) Chứng minh: AB^ = BH.BCTính AB, AH, biết BH = 3cm BC = 12cm c) Gọi E là trung điểm của AB, kẻ HD vuông góc với AC tại D (D thuộc AC). Đường thẳng CE cắt AH và HD lần lượt tại I, K. Chúng minh KH = KD và 3 điểm B, I, D thẳng hàng.