NEU AD//BC.CM AD=BC;AB=CD
Cho góc nhọn xOy Trên tia ox lấy điểm A trên tia oy lấy diểm B sao cho OA=OB.Trên tia Ax lấy điểm C Trên tia By lấy điểm D sao cho AC=BD a)CM AD=BC. b)gọi E là giao điểm AD và BC.CM △EAC=△EBD. c)CM:OE là phân giác của góc xOy
a) xét ΔOCB và ΔODA, ta có :
OA = OB (giả thiết)
\(\widehat{O}\) là góc chung
AC = BD (giả thiết)
⇒ ΔOCB = ΔODA (c.g.c)
⇒ AC = BD (2 cạnh tương ứng)
b) xét ΔEAC và ΔEBD, ta có :
AD = BC (câu a)
\(\widehat{AEC}=\widehat{BED}\) (vì là 2 góc đối đỉnh)
AC = BD (giả thiết)
⇒ ΔEAC = ΔEBD (C.G.C)
c) xét ΔOAE và ΔOBE, ta có :
OA = OB (giả thiết)
AE = BE [vì ΔEAC = ΔEBD (2 cạnh tương ứng)]
OE là cạnh chung
⇒ ΔOAE = ΔOBE (c.c.c)
⇒ \(\widehat{AOE}=\widehat{BOE}\) (2 góc tương ứng)
Cho hihf thang ABCD,AB//CD,AB<CD,AD+BC=DC.AD và BD kéo dài cắt nhau tại I.P giác ^DICcắt DC tại E.Từ E dựng EH vuông góc với AB và EK v góc BC.CM EH=EK.
cho tam giác abc vuông cân ở a.biết ab=ac=4cm.
a)tính bc
b)từ a kẻ ad vuông góc với bc.CM D là trung điểm của bc
c)từ d kẻ de vuông góc với ac.CM tam giác aed vuông cân
a) bc\(^2\)= ab\(^2\)+ bc\(^2\)= 16+16=32
=> bc=\(\sqrt{32}\)
b) Xét tam giác ABD vuông tại D và tam giác ACD vuông tại D có:
Cạnh huyền AB=AC (tam giác ABC vuông cân tại A)
Góc nhọn B=C (tam giác ABC vuông cân tại A)
Do đó ABD=ACD (cạnh huyền-góc nhọn)
=>BD=CD (2 cạnh tương ứng)
=> D là trung điểm của BC
c)Ta có:
AB vuông góc với AC (gt)
DE vuông góc với AB (gt)
=> AC//DE
=> Góc DCA+EDC= 180\(^0\) (2 góc trong cùng phía)
=> EDA+ADC+DCA=180\(^0\)
Mà ADC=90\(^0\)
Nên EDA+DCA=90\(^0\)
Ta có: Tam giác ABC vuông cân tại A
=>ABC+ACB=90\(^0\)
mà ABC+BAD=90\(^0\)(tam giác ABD vuông tại D)
nên ACB=BAD
=> BAD=ABC (1)
Ta có: ABC+BDE=90\(^0\)
Mà BDE+EDA=90\(^0\)
Nên ABC=EDA (2)
Từ (1) và (2) suy ra: BAD=EDA
Tam giác AED có: BAD=EDA
DEA=90\(^0\)
Do đó tam giác ADE vuông cân tại E
cho hình thang ABCD có E,F theo thứ tự là trọng điểm của AD,BC.Cm EF ≤ \(AB+DC/2\)
Xét hình thang ABCD có:
AE = DE
BF = CF
=> EF là đường trung bình của hình thang ABCD
=> EF// AB và DC (1)
Mà : K ∈ EF (2)
Từ (1), (2) => EK // DC
Xét tam giác ADC có
AE = DE
EK// DC
=> AK = CK
Xét hình thang ABCD có
E là trung điểm của AD
F là trung điểm của BC
Do đó: EF là đường trung bình của hình thang ABCD
Suy ra: \(FE=\dfrac{AB+CD}{2}\)
cho hình thang ABCD có E,F theo thứ tự là trung điểm của AD,BC.Cm EF ≤ AB+DC/2
Tham khảo đây nha:
https://hoidap247.com/cau-hoi/1107494
cho hình thang ABCD có E,F theo thứ tự là trọng điểm của AD,BC.Cm EF ≤ AB+DC/2
E,F là trung điểm của AD và BC
=> EF là đường trung bình của hình thang ABCD
=> \(EF=\dfrac{AB+CD}{2}\)
cho tứ giác ABCD có E,F theo thứ tự là trọng điểm của AD,BC.Cm EF ≤ AB+DC/2
cho tứ giác ABCD có E,F theo thứ tự là trọng điểm của AD,BC.Cm EF ≤ AB+DC/2
Cho tam giác ABC có AC>AB. Tia phân giác góc A cắt BC ở D. Kẻ đường thẳng AH vuông góc với BC.CM AD nằm giữa AH và AM.
Giúp mk nha mk tich cho 3 tích
Cho hai so huu ti a/b va c/d (b>0, d>0). Chung to rang :
a, Neu a/b < c/d thi ad<cd
b, Neu ad<bc thi a/b < c/d