Cho tam giác ABC có A ^ = 90 o ;AB=AC. Khi đó:
A. ΔABC là tam giác vuông
B. ΔABC là tam giác cân
C. ΔABC là tam giác vuông cân
D. Cả A,B,C đều đúng
Cho tam giác ABC có A = 90o ; B = 40o ; BC = 8cm. Giải tam giác ABC
Cho tam giác ABC có góc A=90o.E là một điểm nằm trong tam giác ABC. Chứng minh rằng góc BEC là góc tù
Ta có tam giác ABC = 90 độ nên
\(\widehat{ABC}+\widehat{ACE}=90^0\)
Vì lấy điểm E nằm trong tam giác nên\(\widehat{ABE}+\widehat{EBC}+\widehat{ACE}+\widehat{ECB}=90^0\)
\(\Rightarrow\)\(\widehat{EBC}+\widehat{ECB}< 90^0\); \(\widehat{EBC}+\widehat{ECB}< 90^0\)
Nên \(\widehat{BEC}>90^0\)
Cho tam giác ABC cân tại A . Có đường trung tuyến AD (D thuộc BC)
a) CM: tam giác ABD = tam giác ACD
b) Biết A = 90o ; Tính góc B . Tam giác ABC là tam giác gì
Xét tam giác ABD và tam giác ACD có:
AB = AC (gt)
Góc B = Góc C
BD = CD (gt)
Vậy tam giác ABD = tam giác ACD (c - g - c)
b) A = 90o
=> Góc B = \(\frac{180^0-90^0}{2}=45^0\)
Vì tam giác ABC là tam giác cân
Mà A = 90o => Tam giác ABC vuông
Vậy tam giác ABC là tam giác vuông cân
a/ xét \(\Delta\)ABD và \(\Delta\)ACD có
AB=AC (tam giac ABC cân tại A)
BD=CD(vì AD là đường trung tuyến AD)
AD chung
\(\Rightarrow\)\(\Delta\)ABD=\(\Delta\)ACD(c.c.c)
b/ Vì \(\Delta\)ABC cân tại A (gt)nên ^B=^C
Mà ^a+^b+^c=180
\(\Rightarrow\)2^b=180-90
\(\Rightarrow\)^b=45
Cho tam giác ABC có góc A =90o.Kẻ đường cao AH và tia phân giác AD(H,D thuộc BC),Cho biết góc HAD=15o.Tính các góc của tam gics ABC.
Cho tam giác ABC có góc C kém góc B là \(90^o\). Kẻ tia phân giác của góc A cắt BC ở D. Tính góc ADB.
Xét tam giác ABC, có:
A+B+C= 1800
A+ 900 = 1800
A= 1800 -900
A= 900
Mà AD là tia phân giác của góc A
=> CAD=DAB= 900: 2= 450
Ta thấy CAD kề bù ADB
=> CAD+ADB= 1800
ADB= 1800-CAD
ADB= 1800- 450
ADB= 1350
Cho tam giác ABC có góc A <90 o . Vẽ ngoài Tam giác ABC tam giác vuông cân đỉnh A là Tam giác MAB & NAC.
a)Chứng minh MC=NB
b)MC vuông góc NB.
c)Giả sử Tam gíac ABC đều cạnh =4cm.Tính MB=NC
d)Chứng minh NM//BC
a) Thấy ˆMAC=ˆMAB+ˆBAC=90o+ˆBAC=ˆCAN+ˆBAC=ˆBANMAC^=MAB^+BAC^=90o+BAC^=CAN^+BAC^=BAN^
Từ đây ta xét t/g MAC và BAN ta có:
=>MA=BA; AC=AN
=>ˆMAC=ˆBANMAC^=BAN^
=>ΔMAC=ΔBAN(c−g−c)⇒MC=BNΔMAC=ΔBAN(c−g−c)⇒MC=BN
đpcm.
b)
Ta gọi giao điểm của MC và BN là 1 điểm D
Ta có: ˆDBA=ˆDMA(ΔMAC=ΔBAN(c−g−c))DBA^=DMA^(ΔMAC=ΔBAN(c−g−c))
Nên ˆMBD+ˆBMD=ˆMBA+ˆDBA+ˆBMD=ˆMBA+ˆDMA+ˆBMD=ˆMBAMBD^+BMD^=MBA^+DBA^+BMD^=MBA^+DMA^+BMD^=MBA^
+ˆBMA=90o+BMA^=90o
Xét t/g MBD có ˆMBD+ˆBMD=90o⇒ˆBMD=90oMBD^+BMD^=90o⇒BMD^=90o
⇒BN⊥MC⇒BN⊥MC
Bổ sung D giao điểm nhé vào hình nha bn.
c) Ta giả sử như ABC đều cạnh 4cm (theo đề bài) thì sẽ có: AM=AC=AB=NA=4cm
Áp dụng định lý pi-ta-go ta có:
Cho t/g MAB và NAC thì MB=NC=4√2(cm)42(cm)
Khi ABC đều cạnh 4cm thì AMC = NAB là t/g vuông cân có góc ở đỉnh : 90o+60o=150o
=>ˆAMC=ˆACMAMC^=ACM^= (180o-150o):2=15o
Thì ˆMCB=ˆACB−ˆACM=60o−15o=45oMCB^=ACB^−ACM^=60o−15o=45o
Lại có ˆMAN=360o−90o−60o−90o=120oMAN^=360o−90o−60o−90o=120o
Vì t/gMAN cân tại A nên ˆAMNAMN^= (180o-120o) : 2 =30o
=> ˆCNM=30o+15o=45oCNM^=30o+15o=45o
=>ˆCNM=ˆMCBCNM^=MCB^
=> BC//MN ( so le trong)
đpcm.
Cho tam giác ABC có góc A=90 độ; AB=3cm; AC=4cm và tam giác MNP có N=90 độ; MN=8cm; MP=10cm
a) Tính BC và NP
b) Chứng minh tam giác ABC đồng dạng với tam giác NPM
a, Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=5cm\)
Theo định lí Pytago tam giác MNP vuông tại N
\(NP=\sqrt{MP^2-MN^2}=6cm\)
b, Xét tam giác ABC và tam giác NPM có
^BAC = ^PNM = 900
\(\dfrac{AB}{NP}=\dfrac{AC}{NM}=\dfrac{3}{6}=\dfrac{4}{8}=\dfrac{1}{2}\)
Vậy tam giác ABC ~ tam giác NPM ( c.g.c )
Cho tam giác ABC có góc A=90 độ; AB=3cm; AC=4cm và tam giác MNP có N=90 độ; MN=8cm; MP=10cm
a) Tính BC và NP
b) Chứng minh tam giác ABC đồng dạng với tam giác NPM
a: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)
\(NP=\sqrt{10^2-8^2}=6\left(cm\right)\)
b: Xét ΔABC vuông tại A và ΔNPM vuông tại N có
AB/NP=AC/NM
Do đó: ΔABC\(\sim\)ΔNPM
Cho tam giác ABC có góc A=90 độ; AB=3cm; AC=4cm và tam giác MNP có N=90 độ; MN=8cm; MP=10cm
a) Tính BC và NP
b) Chứng minh tam giác ABC đồng dạng với tam giác NPM
cho tam giác ABC có A=90, BC=2a.
a)Giả sử điểm A thay đổi sao cho BAC=90,BC=2a.Tam giác ABC phải thỏa mãn điều kiện gì để diện tích tam giác AHO lớn nhất
b)gọi O là trung điểm của BC, M là trung điểm của AC, AO cắt BM tại G. Giả sử CG cắt AB tại N. Tứ giác AMON là hình gì? Tam giác ABC phải thỏa mãn điều kiện gì để diện tích tứ giác AMON lớn nhất?