Cho tam giác ABC có góc A=120 độ.
a)Tính BC^2 theo các cạnh còn lại
b)Cho AC=3,2005cm; AB=4,2006cm. Tính BC
a:
b: BD=1/3AB
=>AD=2/3AB
=>S AHD=2/3*S AHB=2/3*1/2*AH*HB=1/3*căn 5(cm2)
AE=1/3AC
=>S AEH=1/3*S AHC=1/3*1/2*AH*HC=1/6*căn 5*5=5*căn 5/6(cm2)
S HDAE=5/6*căn 5+1/3*căn 5=7/6*căn 5(cm2)
Bài 2:Cho tam giác ABC có AB=6,AC=8,A=120 độ.Tính cạnh BC và số đo các góc còn lại của tam giác ABC
\(BC=AB^2+AC^2-2\cdot AB\cdot AC\cdot\cos A=148\left(cm\right)\)
Cho tam giác ABC có góc A=120 độ.
a)Tính BC^2 theo các cạnh còn lại
b)Cho AC=3,2005cm; AB=4,2006cm. Tính BC
Cho tam giác ABC có góc A=120 độ.
a)Tính BC^2 theo các cạnh còn lại
b)Cho AC=3,2005cm; AB=4,2006cm. Tính BC
Cho tam giác ABC có góc C bằng 2 lần góc A, cạnh AC bằng 2 lần cạnh BC. Biết AB=5cm, tính các cạnh còn lại của tam giác ABC.
Cho ABC= MNP, biết A= 65 độ , P=30 độ.
a) Tìm các cạnh tương ứng bằng nhau.
b) Tính các góc còn lại của hai tam giác.
a)Các cạnh tương ứng bằng nhau:AB=MN,AC=MP,BC=NP
b)Tam giác ABC: góc A=65 độ,góc B=85 độ,góc C=30 độ
Tam giác MNP:góc M=65 độ,góc N=85 độ,góc P=30 độ
Cho tam giác đều ABC cạnh a, M là trung điểm của BC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho góc DME = 60 độ.
a)Cm BD.CE=a^2/4
b)Cm tam giác MBD đồng dạng tam giác EMD và tam giác ECM đồng dạng tam giác EMD
c) Tính khoảng cách từ điểm M đến đường thẳng DE
Bài 1c) Cho tam giác ABC cân tại A, phân giác BD. Biết góc BAC=120 độ. Tính các cạnh của tam giác
Bài 2: Cho tam giác ABC cân ở A, BC=8cm, phân giác của góc B cắt đường cao AH ở K, AK/AH=3/5.
a) Tính độ dài AB (câu này tớ làm đc rồi)
b) Đường thẳng vuông góc với BK tại B cắt AH ở E. Tính EH (còn mỗi câu này thôi)
Bài 3: Cho tam giác ABC cân, có BA=BC=a, AC=b. Đường phân giác góc A cắt BC tại M, đường phân giác góc C cắt BA tại N
a) Cm: MN//AC
b) Tính MN theo a,b
Bài 4: Cho tam giác ABC cân ở A, phân giác trong BD, BC=10cm, AB=15cm
a) Tính AD, DC
b) Đường phân giác ngoài góc B của tam giác ABC cắt đường thẳng AC tại D'. Tính D'C
Bài 5: Cho tam giác ABC có AB=5cm, AC=6cm, BC=7cm. Gọi G là trọng tâm tam giác ABC, O là giao điểm của 2 đường phân giác BD, AE
a) Tính độ dài đoạn thẳng AD
b) Cm: OG//AC
HD: a) AD=2,5cm b) OG//DM => OG//AC
Bài 6: Cho tam giác ABC. Gọi I là trung điểm của cạnh BC. Đường phân giác của góc AIB cắt cạnh AB ở M. Đường phân giác của góc AIC cắt cạnh AC ở N
a) CMR: MN//BC
b) Gọi giao điểm của DE và AM là O. CM: OM=ON
c) Tam giác ABC phải thoả mãn điều kiện gì để có MN=AI
d) Tam giác ABC phải thoả mãn điều kiện gì để có MN vuông góc với AI
Cho tam giác ABC cân tại A với các đường cao AH, BK. Góc A < 90 độ.
a) Biết AH = 32 và BK =38,4. Tính độ dài ba cạnh của tam giác.
b) Chứng minh rằng \(BC^2=2CK.CA\)
a: AH*BC=BK*AC
=>BC/AC=BK/AH=6/5
=>BH/AC=3/5
=>CH/AC=3/5
=>CH/3=AC/5=k
=>CH=3k; AC=5k
AH^2+HC^2=AC^2
=>16k^2=32^2=1024
=>k^2=64
=>k=8
=>CH=24cm; AC=40cm
=>BC=48cm; AB=40cm
b: Xét ΔCKB vuông tại K và ΔCHA vuông tại H có
góc C chung
=>ΔCKB đồng dạng với ΔCHA
=>CK/CH=CB/CA
=>CK*CA=CH*CB=1/2BC^2
=>2*CK*CA=BC^2