Bài 15: Cho tam giác ABC vuông tại A, có AC = 20 cm; AB = 15 cm. Gọi M là trung điểm của cạnh BC. Tính độ dài đoạn thẳng MA
Bài 15: Cho tam giác ABC vuông tại A, có AC = 20 cm; AB = 15 cm. Gọi M là trung điểm của cạnh BC. Tính độ dài đoạn thẳng MA
Bài 15: Cho tam giác ABC vuông tại A, có AC = 20 cm; AB = 15 cm. Gọi M là trung điểm của cạnh BC. Tính độ dài đoạn thẳng MA.
a) ABC có
MA = MB ( gt )
NB = NC ( gt )
=> MN là đường trung bình của ABC
=> MN = AC = .20 = 10 ( cm )
vuông tại A
=>
=>
= 25 cm
có
AN là đường trung tuyến ( NB = NC )
=> AN = = = 12,5 ( cm ))
b) ABDC có 2 đường chéo AD , BC cắt nhau tại N
mà CN = ND ( gt )
AN = ND ( gt )
=> ABDC là hình bình hành
mà
=> ABDC là hình chữ nhật
*(Cho mình 1 nút like vs bn ơi )
Bài 1: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AH=24 cm và HC=18 cm. Tính: BH, ,BC,AC,AB và diện tích tam giác ABC Bài 2: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB= 12 cm và BC=20 cm. Tính: BH, ,AC,HC,AH và diện tích tam giác ABC Bài 3: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB=3 cm và AC=4 cm. Tính: BH, ,BC,HC,AH và diện tích tam giác ABC Bài 4: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AC=15 cm và AH =12 cm. Tính: BH, ,BC,AB,AH và diện tích tam giác ABC Bài 5:Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB=20 cm và HC=9cm. Tính: BH, ,BC,AC,AH và diện tích tam giác ABC
Bài 5:
Ta có: \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH\left(BH+9\right)=400\)
\(\Leftrightarrow BH^2+25HB-16HB-400=0\)
\(\Leftrightarrow BH=16\left(cm\right)\)
hay BC=25(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)
bài 3: Cho tam giác ABC cân tại A có AB = AC = 5cm, BC = 8cm. Gọi H là trung điểm của BC. Tính AH
Bài 4: Cho ABC có AB= 15 cm, AC = 20 cm, BC = 25 cm. Kẻ AH vuông góc với BC tại H. a) Chứng minh: ABC vuông tại A b) Tính diện tích ABC c) Tính AH giúp mik với trình bày rõ cho mik nha
Cho tam giác abc vuông tại a ,ah là đường cao của tam giác ABC AB = 15 cm AC = 20 cm BC = 25 cm tính ah
cho tam giác ABC vuông tại A, AB=15 cm, AC= 20 cm, đường cao AH. Diện tích tam giác AHB=
ấn vào đúng 0
đáp án và lời giải sẽ hiện ra trước mắt
Đề bài kiểm tra: Cho tam giác ABC vuông tại A. Có góc C = 30°. AC = 15 cm . Giải tam giác vuông . 1)tính góc B 2)Tính AB 3)TínhBC
\(1,\widehat{B}+\widehat{C}=90^0\left(tg.ABC\perp A\right)\\ \Rightarrow\widehat{B}=90^0-60^0=30^0\\ 2,\tan\widehat{C}=\dfrac{AB}{AC}=\tan60^0=\sqrt{3}\Leftrightarrow AB=15\sqrt{3}\left(cm\right)\\ 3,BC=\sqrt{AB^2+AC^2}=30\left(cm\right)\left(pytago\right)\)
bài 1 cho tam giác ABC vuông tại A, có AB = 15 cm ;AC = 20cm và đường cao AH. Tính độ dài đoạn thẳng BC và AH
bài 2 cho tam giác ABC vuông tại AH,có AB =15cm,AH=12cm.Tính BH,BC,CH,AC
bài 3 cho tứ giác lồi ABCD có AC vuông góc vs BD tại O.Chứng minh AB2 + CD2 = AD2+ BC2.
giải giúp mình trong hôm nay với
bài 9
tam giác ABC vuông tại A có
* BC2=AB2+AC2
BC2=152+202=625
BC=25cm
* AH.BC=AB.AC
AH.25=15.20
AH.25=300
AH=12cm
tam giác ABH vuông tại H có
BH2=AB2-AH2
BH2=152-122=81
BH=9cm
tam giác ABC vuông tại A có
*AB2=BH.BC
225=9.BC
BC=25cm
CH=BC-BH=25-9=16cm
*AC2=BC2-AB2
AC2=252-152=400
AC=20cm
Cho tam giác ABC vuông tại A (AC > AB). Đường cao AH, đường phân giác AM. 1) Chứng minh: tam giác ABC ഗ tam giác HAC. 2) Cho AB = 15 cm; AC = 20 cm. Tính BM, CM. 3) Gọi điểm D, E lần lượt là hình chiếu vuông góc của điểm H trên AB và AC. Chứng minh: tam giác ADE ഗ tam giác ACB
1: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc ACB chung
Do đó: ΔABC\(\sim\)ΔHAC
2: \(BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)
Xét ΔABC có AM là phân giác
nên BM/AB=CM/AC
=>BM/3=CM/4
Áp dụng tính chất của dãy tr số bằng nhau, ta được:
\(\dfrac{BM}{3}=\dfrac{CM}{4}=\dfrac{BM+CM}{3+4}=\dfrac{25}{7}\)
Do đó: BM=75/7(cm); CM=100/7(cm)