Cho A=\(\frac{x^2-3x+2}{x^2-4}\)
a) Rút gọn A
b) Tìm x để A>0;A<0;A=0 có nghĩa và vô nghĩa
\(A=\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{2\sqrt{x}}{\sqrt{x}-2}-\frac{3x+4}{x-4}\) với \(x\ge 0\);x#4
a,Rút gọn A
b,Tìm giá trị của x để A=\(\frac{1}{2}\)
a: \(A=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)+2\sqrt{x}\left(\sqrt{x}+2\right)-3x-4}{x-4}\)
\(=\dfrac{x-2\sqrt{x}+2x+4\sqrt{x}-3x-4}{x-4}\)
\(=\dfrac{2\sqrt{x}-4}{x-4}=\dfrac{2}{\sqrt{x}+2}\)
b: A=1/2
=>\(\sqrt{x}+2=4\)
=>\(\sqrt{x}=2\)
=>x=4(loại)
cho biểu thức : A=( 3x+1/3x-1 - 3x-1/3x+1): 3x/ 6x-2.
a) Rút gọn A
b) Tìm x để A=1
c) Tìm x để A>0
Bài 4: Cho biểu thức A \(=\left(\dfrac{1}{x+2}-\dfrac{2}{x-2}-\dfrac{x}{4-x^2}\right):\dfrac{6\left(x+2\right)}{\left(2-x\right)\left(x+1\right)}\)
a) Rút gọn A
b)Tìm x để A > 0
c) Tìm x biết x2 + 3x + 2 \(=0\)
d) Tìm x để A đạt GTLN, tìm GTLN đó
a: \(A=\dfrac{x-2-2x-4+x}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-\left(x-2\right)\left(x+1\right)}{6\left(x+2\right)}\)
\(=\dfrac{-6}{\left(x+2\right)}\cdot\dfrac{-\left(x+1\right)}{6\left(x+2\right)}=\dfrac{\left(x+1\right)}{\left(x+2\right)^2}\)
b: A>0
=>x+1>0
=>x>-1
c: x^2+3x+2=0
=>(x+1)(x+2)=0
=>x=-2(loại) hoặc x=-1(loại)
Do đó: Khi x^2+3x+2=0 thì A ko có giá trị
B1:Cho biểu thức \(A=\left(\dfrac{1}{x+2}-\dfrac{2}{x-2}-\dfrac{x}{4-x}\right):\dfrac{6\left(x+2\right)}{\left(2-x\right)\left(x+1\right)}\)
a. Rút gọn biểu thức A
b. Tìm x để A > 0
c. Tìm x biết \(x^2+3x+2=0\)
d. Tìm x để A đạt GTLN, tìm GTLN đó.
Cho biểu thức\(A=\left(\dfrac{2+x}{2-x}-\dfrac{2-x}{2+x}-\dfrac{4x^2}{x^2-4}\right):\dfrac{x^2-6x+9}{\left(2-x\right)\left(x-3\right)}\)
a. Rút gọn A
b. Tính giá trị của A biết \(\left|x-5\right|=2\)
c. Tìm giá trị nguyên dương của x để A < 4 và A có giá trị là một số nguyên.
B1: ĐXXĐ: \(x\ne\pm2;x\ne-1\)
\(=\left(\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}-\dfrac{2\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}+\dfrac{x}{\left(x+2\right)\left(x-2\right)}\right):\dfrac{-6\left(x+2\right)}{\left(x-2\right)\left(x+1\right)}\)
\(=\left(\dfrac{x-2-2x-2+x}{\left(x+2\right)\left(x-2\right)}\right):\dfrac{-6\left(x+2\right)}{\left(x-2\right)\left(x+1\right)}\)
\(=\dfrac{-4}{\left(x+2\right)\left(x-2\right)}:\dfrac{-6\left(x+2\right)}{\left(x-2\right)\left(x+1\right)}\)
\(=\dfrac{-4}{\left(x+2\right)\left(x-2\right)}.\dfrac{\left(x-2\right)\left(x+1\right)}{-6\left(x+2\right)}=\dfrac{2\left(x+1\right)}{3\left(x+2\right)^2}\)
b, \(A=\dfrac{2\left(x+1\right)}{3\left(x+2\right)^2}>0\)
\(\Leftrightarrow2x+2>0\) (vì \(3\left(x+2\right)^2\ge0\forall x\))
\(\Leftrightarrow x>-1\).
-Vậy \(x\in\left\{x\in Rlx>-1;x\ne2\right\}\) thì \(A>0\).
Cho biểu thức A = \(\left(\frac{1}{x+2}-\frac{2}{x-2}-\frac{x}{4-x^2}\right):\frac{6\left(x+2\right)}{\left(2-x\right)\left(x+1\right)}\)
a) Rút gọn A
b) Tìm x để A > 0
c) Tìm x để \(x^2+3x+2=0\)
d) Tìm x để A đạt GTLN , tìm GTLN đó
a) \(-ĐKXĐ:x\ne\pm2;1\)
Rút gọn : \(A=\left(\frac{1}{x+2}-\frac{2}{x-2}-\frac{x}{4-x^2}\right):\frac{6\left(x+2\right)}{\left(2-x\right)\left(x+1\right)}\)
\(=\left(\frac{1}{x+2}+\frac{-2}{x-2}+\frac{x}{x^2-4}\right).\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)
\(=\left[\frac{x-2}{\left(x-2\right)\left(x+2\right)}+\frac{\left(-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x}{\left(x-2\right)\left(x+2\right)}\right]\)\(.\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)
\(=\left[\frac{x-2-2x-4+x}{\left(x-2\right)\left(x+2\right)}\right].\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)
\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)\(=\frac{x+1}{\left(x+2\right)^2}\)
b) \(A>0\Leftrightarrow\frac{x+1}{\left(x+2\right)^2}>0\Leftrightarrow\orbr{\begin{cases}x+1< 0;\left(x+2\right)^2< 0\left(voly\right)\\x+1>0;\left(x+2\right)^2>0\end{cases}}\)
\(\Leftrightarrow x>1;x>-2\Leftrightarrow x>1\)
Vậy với mọi x thỏa mãn x>1 thì A > 0
c) Ta có : \(x^2+3x+2=0\Leftrightarrow x^2+x+2x+2=0\)
\(\Leftrightarrow x\left(x+1\right)+2\left(x+1\right)=0\Leftrightarrow\left(x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)
Vậy x = -1;-2
Cho \(A=\left(\frac{2+x}{2-x}+\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\left(\frac{x^2-3x}{2x^2-3x}\right)\)
a)Rút gọn A
b)Tìm x để A>0
c)Tính giá trị của A trong trường hợp \(\left|x-7\right|=4\)
\(DKXD:x\ne\pm2;x\ne3;x\ne\frac{3}{2};x\ne0\)
\(A=\left(\frac{2+x}{2-x}+\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\left(\frac{x^2-3x}{2x^2-3x}\right)\)
\(=\frac{\left(2+x\right)^2-4x^2-\left(2-x\right)^2}{\left(2-x\right)\left(2+x\right)}\cdot\frac{2x^2-3x}{x^2-3x}\)
\(=\frac{4+4x+x^2-4x^2-4+4x-x^2}{\left(2-x\right)\left(2+x\right)}\cdot\frac{x\left(2x-3\right)}{x\left(x-3\right)}\)
\(=\frac{8x-4x^2}{\left(2-x\right)\left(2+x\right)}\cdot\frac{2x-3}{x-3}\)
\(=\frac{4x\left(2x-3\right)}{\left(2+x\right)\left(x-3\right)}\)
b
Xét hơi bị nhiều TH nhá:(
Để \(A>0\) thì \(\frac{4x\left(2x-3\right)}{\left(2+x\right)\left(x-3\right)}>0\)
TH1:\(4x\left(2x-3\right)>0;\left(2+x\right)\left(x-3\right)>0\)
\(TH2:4x\left(2x-3\right)< 0;\left(2+x\right)\left(x-3\right)< 0\)
Bạn tự xét nốt nhá!
c
\(\left|x-7\right|=4\Rightarrow x-7=4;x-7=-4\)
\(\Rightarrow x=11;x=3\)
Thay vào .....
chọn biểu thức A=(x+5)(4-3x)-(3x+2)^2+(2x+1)^3-(2x-1)(4x^2+2x+1)
a)Rút gọn biểu thức A
b)Tính giá trị của A khi x=-3
c)tìm x để A=0
a: \(A=4x-3x^2+20-15x-9x^2-12x-4+\left(2x+1\right)^3-\left(8x^3-1\right)\)
\(=-12x^2-23x+16+8x^3+12x^2+6x+1-8x^3+1\)
\(=-17x+18\)
Cho biểu thức: A= \(\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\left(\frac{x^2-3x}{2x^2-x^{^3}}\right)\)
a, Tìm ĐKXĐ rồi rút gọn biểu thức A
b, Tìm giá trị của x để A>0
c, Tìm giá trị của A trong trường hợp |x-7|=4
Bài làm:
a) \(đkxd:x\ne2;x\ne-2;x\ne0;x\ne3\)
Ta có: \(A=\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\left(\frac{x^2-3x}{2x^2-x^3}\right)\)
\(A=\left(\frac{\left(x+2\right)^2+4x^2-\left(2-x\right)^2}{\left(2-x\right)\left(2+x\right)}\right):\left(\frac{x\left(x-3\right)}{x^2\left(2-x\right)}\right)\)
\(A=\left[\frac{x^2+4x+4+4x^2-4+4x-x^2}{\left(2-x\right)\left(2+x\right)}\right]:\frac{x-3}{x\left(2-x\right)}\)
\(A=\frac{4x^2+8x}{\left(2-x\right)\left(2+x\right)}.\frac{x\left(2-x\right)}{x-3}\)
\(A=\frac{4x\left(x+2\right)}{\left(2-x\right)\left(2+x\right)}.\frac{x\left(2-x\right)}{x-3}\)
\(A=\frac{4x^2}{x-3}\)
b) Ta có: \(4x^2>0\left(\forall x\ne0\right)\)
=> Để A>0 thì \(x-3>0\)
\(\Rightarrow x>3\)
Vậy với \(x>3\)thì A>0
c) Ta có: \(\left|x-7\right|=4\)\(\Rightarrow\orbr{\begin{cases}x-7=4\\x-7=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=11\\x=3\end{cases}}\)
Mà theo điều kiện xác định, \(x\ne3\)
\(\Rightarrow x=11\)
Khi đó, \(A=\frac{4.11^2}{11-3}=\frac{121}{2}\)
Vậy \(A=\frac{121}{2}\)
Học tốt!!!!
Cho \(P=1+\frac{x+3}{x^2+5x+6}:\left(\frac{8x^2}{4x^3-8x^2}-\frac{3x}{3x^2-12}-\frac{1}{x+2}\right)\)
a) Rút gọn P
b) Tìm x để P = 0
c) Tìm x để P>0
\(P=1+\frac{x+3}{x^2+5x+6}:\left(\frac{8x^2}{4x^3-8x^2}-\frac{3x}{3x^2-12}-\frac{1}{x+2}\right)\)
\(P=1+\frac{x+3}{\left(x+3\right)\left(x+2\right)}:\left(\frac{8x^2}{4x^3-8x^2}-\frac{3x}{3\left(x^2-4\right)}-\frac{1}{x+2}\right)\)
\(P=1+\frac{1}{x+2}:\left(\frac{4x^2.2}{4x^2\left(x-2\right)}-\frac{x}{\left(x+2\right)\left(x-2\right)}-\frac{1}{x+2}\right)\)
\(P=1+\frac{1}{x+2}:\left(\frac{2}{x-2}-\frac{x}{\left(x+2\right)\left(x-2\right)}-\frac{x-2}{\left(x+2\right)\left(x-2\right)}\right)\)
\(P=1+\frac{1}{x+2}:\left(\frac{2x+4-x-x+2}{\left(x+2\right)\left(x-2\right)}\right)\)
\(P=1+\frac{1}{x+2}:\frac{6}{\left(x+2\right)\left(x-2\right)}=1+\frac{\left(x+2\right)\left(x-2\right)}{6\left(x+2\right)}=1+\frac{x-2}{6}\)
\(=\frac{x+4}{6}.P=0\Leftrightarrow x=-4\)
\(P>0\Leftrightarrow x>-4\)
sai lớp :>>>