Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lee Nhiên
Xem chi tiết
Phương Lê
Xem chi tiết
Nguyễn Phương HÀ
12 tháng 8 2016 lúc 21:29

Hỏi đáp Toán

Bảo Thiii
Xem chi tiết

Gọi E là giao điểm của PQ và AB

Ta có: MNPQ là hình bình hành

=>MN//PQ

=>\(\hat{BMN}=\hat{BEP}\) (hai góc đồng vị)

\(\hat{BEP}=\hat{QPD}\) (hai góc so le trong, AB//CD)

nên \(\hat{BMN}=\hat{DPQ}\)

Xét ΔBMN và ΔDPQ có

\(\hat{BMN}=\hat{DPQ}\)

\(\hat{MBN}=\hat{PDQ}\) (ABCD là hình bình hành)

Do đó: ΔBMN~ΔDPQ

=>\(\frac{BM}{DP}=\frac{BN}{DQ}=\frac{MN}{PQ}=1\)

=>BM=DP; BN=DQ

Xét tứ giác BMDP có

BM//DP

BM=DP

Do đó: BMDP là hình bình hành

=>BD cắt MP tại trung điểm của mỗi đường(1)

Ta có: MNPQ là hình bình hành

=>MP cắt NQ tại trung điểm của mỗi đường(2)

ta có: ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường(3)

Từ (1),(2),(3) suy ra BD,MP,NQ,AC đồng quy tại trung điểm của mỗi đường

hay hình bình hành MNPQ có chung tâm O với hình bình hành ABCD

Phan Thủy Tiên
Xem chi tiết
Phạm Ngọc Ánh Thư
Xem chi tiết
Trần Đăng Khang
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 12 2020 lúc 20:46

\(\overrightarrow{GB}=\left(4;\dfrac{28}{3}\right)\)

Gọi \(D\left(x;y\right)\) \(\Rightarrow\overrightarrow{DG}=\left(-x;-\dfrac{13}{3}-y\right)\)

Gọi O là tâm hbh \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{DG}=\dfrac{2}{3}\overrightarrow{DO}\\\overrightarrow{DO}=\overrightarrow{OB}\end{matrix}\right.\) 

\(\Rightarrow\overrightarrow{DG}=\dfrac{1}{3}\overrightarrow{DB}=\dfrac{1}{2}\overrightarrow{GB}\)

\(\Rightarrow\left\{{}\begin{matrix}-x=\dfrac{1}{2}.4\\-\dfrac{13}{3}-y=\dfrac{1}{2}.\dfrac{28}{3}\end{matrix}\right.\) \(\Rightarrow D\left(-2;-9\right)\)

Thảo Hoàng Thị
Xem chi tiết
Hân Hân
Xem chi tiết
qqqqw
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 8 2021 lúc 13:30

Đề bài yêu cầu gì vậy bạn?