Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sách Giáo Khoa
Xem chi tiết
Hai Binh
27 tháng 4 2017 lúc 17:32

Hỏi đáp Toán

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
27 tháng 5 2017 lúc 8:25

\(\overrightarrow{m}=\left(-4;-2;3\right);\overrightarrow{n}=\left(-9;2;1\right)\)

Khánh Đào
Xem chi tiết
Nguyễn Thanh Bình
9 tháng 5 2021 lúc 15:46

D

 

Sách Giáo Khoa
Xem chi tiết
Quang Duy
31 tháng 3 2017 lúc 17:06

Giải bài 2 trang 120 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 2 trang 120 sgk Hình học 11 | Để học tốt Toán 11

Thỏa mãn :

- Giá của 3 vector đều song song với mặt phẳng (P) nên chúng đồng phẳng

- Khi ba vectơ có giá của chúng cùng song song với một mặt phẳng

Sách Giáo Khoa
Xem chi tiết
Khánh Hà
1 tháng 4 2017 lúc 14:37

Giải:

a) Măt phẳng (P) đi qua điểm M(1; -2; 4) và nhận = (2; 3; 5) làm vectơ pháp tuyến có phương trình:

2(x - 1) + 3(x +2) + 5(z - 4) = 0 ⇔ (P) : 2x + 3y + 5z -16 = 0.

b) Xét = (2 ; -6 ; 6), khi đó ⊥ (Q) là mặt phẳng qua A (0 ; -1 ; 2) và song song với , (nhận , làm vectơ chỉ phương).

Phương trình mặt phẳng (Q) có dạng:

2(x - 0) - 6(y + 1) + 6(z - 2) = 0 ⇔ (Q) :x - 3y + 3z - 9 = 0

c) Gọi (R) là mặt phẳng qua A, B, C khi đó , là cặp vectơ chỉ phương của (R).

= (2 ; 3 ; 6)

Vậy phương trình mặt phẳng (R) có dạng: 2x + 3y + 6z + 6 = 0

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 1 2017 lúc 16:35

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
27 tháng 5 2017 lúc 8:05

Hình giải tích trong không gian

Hình giải tích trong không gian

Nguyễn Tấn Hưng
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 4 2022 lúc 9:35

\(cos\left(\overrightarrow{b};\overrightarrow{a}-\overrightarrow{b}\right)=\dfrac{\overrightarrow{b}\left(\overrightarrow{a}-\overrightarrow{b}\right)}{\left|\overrightarrow{b}\right|.\left|\overrightarrow{a}-\overrightarrow{b}\right|}=\dfrac{\overrightarrow{a}.\overrightarrow{b}-\overrightarrow{b}^2}{1.\sqrt{3}}=\dfrac{2.1.cos\dfrac{\pi}{3}-1^2}{\sqrt{3}}=0\)

\(\Rightarrow\left(\overrightarrow{b};\overrightarrow{a}-\overrightarrow{b}\right)=90^0\)

Phong Trần
Xem chi tiết