Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 7 2019 lúc 11:52

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 9 2019 lúc 9:56

Đáp án B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 3 2018 lúc 5:19

Đáp án C

Dựa vào dữ kiện đề bài ta có thể suy ra tổng  S là tổng của cấp số nhân lùi vô hạn với công bội 

q = 1 4 ⇒ S = S 1 1 − q = a 3 3 4 . 1 4 1 − 1 4 = a 2 3 12

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 9 2018 lúc 7:10

Đáp án C

Dựa vào dữ kiện đề bài ta có thể suy ra tổng  S là tổng của cấp số nhân lùi vô hạn với công bội  q = 1 4 ⇒ S = S 1 1 − q = a 3 3 4 . 1 4 1 − 1 4 = a 2 3 12

Tran Huong
Xem chi tiết
Nguyễn Minh Đức Đức
15 tháng 3 lúc 22:29

a = 60cm

p = 160/2 = 80cm

p = \(\dfrac{a+b+c}{2}\) (1) => \(\dfrac{2p-a}{2}\) = \(\dfrac{b+c}{2}\)

Vì a, p là 1 hằng số nên để S đạt GTLN <=> (p-b) và (p-c) đạt GTLN

Áp dụng bđt Cosin, ta có:

\(\sqrt{\left(p-b\right)\left(p-c\right)}\) <= \(\dfrac{p-b+p-c}{2}\) = \(\dfrac{2p-b-c}{2}\)

=> \(\dfrac{S}{\sqrt{p\left(p-a\right)}}\) <= \(p-\dfrac{b+c}{2}\) = \(p-\dfrac{2p-a}{2}\) = \(\dfrac{a}{2}\)

=> 2S <= \(a\sqrt{p\left(p-a\right)}\) = \(60\sqrt{80.\left(80-60\right)}\) = 2400

=> S <= 1200 (\(cm^2\))

Dấu "=" xảy ra

<=> \(p-b\) = \(p-c\)

<=> b = c

Thay b = c vào (1), ta được:

p = \(\dfrac{a+2b}{2}\) => 80 = \(\dfrac{60+2b}{2}\) => b = c = 50 (cm)

=> đpcm

Le Van Tan
Xem chi tiết
Nguyễn Hữu Tuân
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 4 2018 lúc 12:58

Buddy
Xem chi tiết
Quoc Tran Anh Le
22 tháng 9 2023 lúc 20:43

loading...

Kẻ \(AH \bot BC\left( {H \in BC} \right)\)

\(SA \bot \left( {ABC} \right) \Rightarrow SA \bot BC\)

\( \Rightarrow BC \bot \left( {SAH} \right) \Rightarrow BC \bot SH\)

Vậy \(\widehat {SHA}\) là góc phẳng nhị diện của góc nhị diện \(\left[ {A,BC,S} \right]\)

\( \Rightarrow \widehat {SHA} = \alpha \)

\(\begin{array}{l}{S_{\Delta ABC}} = \frac{1}{2}BC.AH,{S_{\Delta SBC}} = \frac{1}{2}BC.SH\\ \Rightarrow \frac{{{S_{\Delta ABC}}}}{{{S_{\Delta SBC}}}} = \frac{{\frac{1}{2}BC.AH}}{{\frac{1}{2}BC.SH}} = \frac{{AH}}{{SH}} = \cos \widehat {SHA} = \cos \alpha \end{array}\)