Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Thu Thảo
Xem chi tiết
Hoàng Đức Minh
Xem chi tiết
Hiền Thương
2 tháng 7 2021 lúc 19:50

2. 

Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x\(\in\) N)

 Ta có : x (x+1) (x+2 ) (x+3 ) +1 

 =(  x2 + 3x ) (x2 + 2x + x +2 )  +1 

= (  x2 + 3x ) (x2 +3x + 2 ) +1  (*)

Đặt t = x2 + 3x  thì  (* ) =  t ( t+2 ) + 1=  t2 + 2t +1  =  (t+1) = (x2 + 3x + 1 )2

=>  x (x+1) (x+2 ) (x+3 ) +1  là số chính phương 

hay tích 4 số tự nhiên liên tiếp  cộng  1 là số chính phương 

Khách vãng lai đã xóa
Lê Thị Duyên
23 tháng 11 lúc 21:45

Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x

∈ N)

 

 Ta có : x (x+1) (x+2 ) (x+3 ) +1 

 

 =( x2 + 3x ) (x2 + 2x + x +2 ) +1 

 

= ( x2 + 3x ) (x2 +3x + 2 ) +1 (*)

 

Đặt t = x2 + 3x thì (* ) = t ( t+2 ) + 1= t2 + 2t +1 = (t+1)2 = (x2 + 3x + 1 )2

 

=> x (x+1) (x+2 ) (x+3 ) +1 là số chính phương 

 

hay tích 4 số tự nhiên liên tiếp cộng 1 là số chính phương 

Lê Trọng Quý
Xem chi tiết
Trần Minh Đồng
Xem chi tiết
hoàng a long
Xem chi tiết
Hermione Granger
6 tháng 10 2021 lúc 11:02

a) Từ giả thiếtta có thể đặt :  \(n^2-1=3m\left(m+1\right)\)  với m là 1 số nguyên dương

Biến đổi phương trình ta có : 

\(\left(2n-1;2n+1\right)=1\) nên dẫn đến :

 \(TH1:2n-1=3u^2;2n+1=v^2\)

\(TH2:2n-1=u^2;2n+1=3v^2\)

\(TH1:\)

\(\Rightarrow v^2-3u^2=2\)

\(\Rightarrow v^2=2\left(mod3\right)\)

Còn lại TH2 cho ta  \(2n-1\) là số chính phương

b) Ta có : 

\(\frac{n^2-1}{3}=k\left(k+1\right)\left(k\in N\right)\)

\(\Leftrightarrow n^2=3k^2+3k+1\)

\(\Leftrightarrow4n^2-1=12k^2+12k+3\)

\(\Leftrightarrow\left(2n-1\right)\left(2n+1\right)=3\left(2k+1\right)^2\)

- Xét 2 trường hợp :

\(TH1:\Rightarrow\hept{\begin{cases}2n-1=3p^2\\2n+1=3q\end{cases}}\)

\(TH2:\Rightarrow\hept{\begin{cases}2n-1=p^2\\2n+1=3q^2\end{cases}}\)

+) TH1 :

Hệ  \(PT\Leftrightarrow q^2=3p^2+2=2\left(mod3\right)\) ( loại, vì số chính phương chia 3 dư 0 hoặc 1 )

+) TH2 :

Hệ  \(PT\Leftrightarrow p=2a+1\Rightarrow2n=\left(2a+1\right)^2+1\Rightarrow n^2=a^2+\left(a+1\right)^2\) ( dpcm )

Khách vãng lai đã xóa
tuan le
Xem chi tiết
Hoàng Vũ Nghị
Xem chi tiết
Nghị Hoàng
Xem chi tiết
Nguyễn Mai Anh
Xem chi tiết
nguyễn thị yến nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 7 2023 lúc 11:38

Giả sử 1^3+2^3+...+n^3=(1+2+...+n)^2(1)

Khi n=1 thì ta sẽ có 1^3=1^2(đúng)

Giả sử (1) đúng khi n=k

Khi n=2 thì ta sẽ có 1^3+2^3=9=(1+2)^2

Ta sẽ cần chứng minh (1) đúng khi n=k+1

1^3+2^3+...+n^3

=1^3+2^3+...+k^3+(k+1)^3

=(1+2+3+...+k)^2+(k+1)^3

Xét biểu thức (k+1)^2+2(k+1)(1+2+...+k)

=(k+1)^2+2*(k+1)*k*(k+1)/2

=(k+1)^2*(1+k)=(k+1)^3

=>1^3+2^3+...+(k+1)^3

loading...

=>ĐPCM