Số m được chia thành 3 phần sao cho phần thứ nhất và phần thứ hai tỉ lệ với 5 và 6 ; phần thứ hai và phần thứ ba tỉ lệ với phần thứ ba. Biết phần thứ ba hơn phần thứ hai là 150 Tìm m
Số M được chia thành ba phần tỉ lệ nghịch với 3 ; 5 ; 6 . Biết rằng tổng các lập phương của ba phần đó là 10729. Hãy tìm số M
Câu tương tự :
Gọi x,y,z là 3 phần chia ra từ A lần lượt tỉ lệ nghịch với 5, 2 và 4.
Theo đề bài, ta có: x^3 + y^3 + z^3 = 9512 (1)
x + y + z = A (2)
Gọi k là hằng số của hệ số nghịch đảo của x,y,z và 5,2,4.
Ta có x = k/5, y=k/2, z=k/4 (3)
Thay (3) vào (1) ta có:
k^3/5^3 + k^3/2^3 + k^3/4^3 = 9512
-> k^3/125 + k^3/8 + k^3/64 = 9512
-> 64*k^3 + (125*8)k^3 + 125*k^3 = 9512 * 125 * 64
-> (64 + 1000 + 125)* k^3 = 76096000
-> k^3 = 76090000 / 1189 = 64000 = 64 * 1000 = 4^3 * 10^3 = (4*10)^3
-> k = 40
Suy ra: x = k/5 = 8, y = k/2 = 20, z = k/4 = 10
Theo (2) ta suy ra A = x+y+z = 8+20+10 = 38
a, Chia số 315 thành ba phần tỉ lệ nghịch với 3;5;6
b, Chia số 786 thành ba phần tỉ lệ nghịch với 0,2;10/3;4/5
a, Gọi 3 phần đó là \(x,y,z\)
Ta có: \(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{6}}\)và \(x+y+z=315\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{6}}=\frac{x+y+z}{\frac{1}{3}+\frac{1}{5}+\frac{1}{6}}=\frac{315}{0,7}=450\)
\(\frac{x}{\frac{1}{3}}=450\Leftrightarrow x=150\)
\(\frac{y}{\frac{1}{5}}=450\Leftrightarrow y=90\)
\(\frac{z}{\frac{1}{6}}=450\Leftrightarrow z=75\)
Vậy 3 phần đó là \(150;90;75\)
Mình làm hơi tắt, bạn thông cảm nhé!
HÃy chia số 470 thành ba phần tỉ lệ nghịch với 3, 4 , 5
Hãy chia 555 với 3 tỉ lệ nghịch 4 5 6
Hãy chia 314 thành ba tỉ lệ thuận 2/3 3/5 3/7
Answer:
Câu 1:
Gọi ba phần được chia từ số 470 lần lượt là x, y, z
Có: Ba phần tỉ lệ nghịch với 3, 4, 5
\(\Rightarrow x3=y4=z5\Rightarrow\frac{x}{20}=\frac{y}{15}=\frac{z}{12}\) và \(x+y+z=470\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{20}=\frac{y}{15}=\frac{z}{12}=\frac{x+y+z}{20+15+12}=\frac{470}{47}=10\)
\(\Rightarrow\hept{\begin{cases}x=200\\y=150\\z=120\end{cases}}\)
Câu 2:
Gọi ba phần được chia từ số 555 lần lượt là x, y, z
\(\Rightarrow\hept{\begin{cases}x+y+z=55\\4x=5y=6z\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=55\\\frac{x}{15}=\frac{y}{12}=\frac{z}{10}=\frac{x}{15+12+10}=\frac{555}{35}=\frac{111}{7}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1665}{7}\\y=\frac{1332}{7}\\z=\frac{1110}{7}\end{cases}}\)
Câu 3:
Gọi ba phần được chia từ số 314 lần lượt là x, y, z
\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{2}{3}x=\frac{2}{5}y=\frac{3}{7}z\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{2x}{3}=\frac{2y}{5}=\frac{3z}{7}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{x}{9}=\frac{y}{15}=\frac{z}{14}=\frac{x+y+z}{9+15+14}=\frac{314}{38}=\frac{157}{19}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1413}{19}\\y=\frac{2355}{19}\\z=\frac{2198}{19}\end{cases}}\)
Một số A được chia thành ba phần tỉ lệ nghịch với 5 ; 2 ; 4 . Biết tổng các lập phương của ba phần đó là 9512. Hãy tìm A
gọi ba phần là x,y,z
Ta có : x : y : z = \(\frac{1}{5}:\frac{1}{2}:\frac{1}{4}=4:10:5\)
hay \(\frac{x}{4}=\frac{y}{10}=\frac{z}{5}=k\)
\(\Rightarrow k^3=\frac{x^3}{64}=\frac{y^3}{1000}=\frac{z^3}{125}=\frac{x^3+y^3+z^3}{64+1000+125}=\frac{9512}{1189}=8\)
\(\Rightarrow k=2\)
Vậy : \(\frac{x+y+z}{4+10+5}=2\)suy ra \(x+y+z=2.19=38\)
\(\Rightarrow A=38\)
Gọi 3 phần đó đó là a,b,c
Vì a,b,c tỉ lệ nghịch với 5;2;4 nên a,b,c tỉ lệ thuận với 1/5,1/2,1/4 tức là
\(\frac{a}{\frac{1}{5}}=\frac{b}{\frac{1}{2}}=\frac{c}{\frac{1}{4}}\Rightarrow5a=2b=4c\Rightarrow\frac{5a}{20}=\frac{2b}{20}=\frac{4c}{20}\Rightarrow\frac{a}{4}=\frac{b}{10}=\frac{c}{5}\)
Đặt \(k=\frac{a}{4}=\frac{b}{10}=\frac{c}{5}\)
\(\Rightarrow k^3=\frac{a^3}{64}=\frac{b^3}{1000}=\frac{c^3}{125}=\frac{a^3+b^3+c^3}{64+1000+125}=\frac{9512}{1189}=8\)
=> k = 2
\(\Rightarrow\hept{\begin{cases}\frac{a}{4}=2\\\frac{b}{10}=2\\\frac{c}{5}=2\end{cases}\Rightarrow\hept{\begin{cases}a=8\\b=20\\c=10\end{cases}}}\)
=> A = a + b + c = 8 + 20 + 10 = 38
chia số 930 thành ba phần sao cho phần thứ nhất và phần thứ hai tỉ lệ thuận với 2 và 3 , phần thứ nhất và phần thứ ba tỉ lệ nghịch với 3 và 5
gọi 3 phần lần lượt là a,b,c
=>\(\frac{a}{2}=\frac{b}{3}\)và \(a.3=c.5\)=>\(\frac{a}{2}=\frac{b}{3}\)và\(\frac{a}{5}=\frac{c}{3}\)
=>\(\frac{a}{2.5}=\frac{b}{3.5}\)và \(\frac{a}{5.2}=\frac{c}{3.2}\)
=>\(\frac{a}{10}=\frac{b}{15}\)và \(\frac{a}{10}=\frac{c}{6}\)
=>\(\frac{a}{10}=\frac{b}{15}=\frac{c}{6}\)và a+b+c=930
áp dụng t/c dãy tỉ số bằng nhau
=>\(\frac{a}{10}=\frac{b}{15}=\frac{c}{6}=\frac{a+b+c}{10+15+6}=\frac{930}{31}=30\)
=>\(\hept{\begin{cases}a=30.10\\b=30.15\\c=30.6\end{cases}}\)=>\(\hept{\begin{cases}a=300\\b=450\\c=180\end{cases}}\)
vậy 3 phần lần lượt là 300;450;180
Bài 2: Một số M được chia làm 3 phần sao cho phần thứ nhất và phần thứ hai tỉ lệ thuận với 5 và 6 ; phần thứ hai và phần thứ ba tỉ lệ thuận với 8 và 9 . Biết phần thứ ba hơn phần thứ hai là 150 . Tìm số M.
Một số M được chia làm ba phần . Phần 1 và 2 tỉ lệ thuận với 5 và 6 , phần 2 và 3 tỉ lệ thuận với 8 và 9 . Biết phần 3 hơn phần 2 là 150 . Tìm M
gọi 3 phần đó là a;b;c
ta có:a và b tỉ lệ với 5 và 6=>a/5=b/6=>a/20=b/24(10
b và c tỉ lệ với 8 và 9=>b/8=c/9=>b/24=c/27(2)
từ 1,2=>a/20=b/24=c/27 và c-b=150
áp dụng... ta có:
a/20=b/24=c/27=c-b/27-24=150/3=50
từ a/20=50=>a=1000
b/24=50=>b=1200
c/27=50=>c=1350
=>M=a+b+c=1000+1200+1350=3550
tick nhé
a) Chia số 850 thành ba phần tỉ lệ thuận với 3;5;9
b) Chia số 200 thành ba phần tỉ lệ thuận với 7;4;2
giúp mình nha
mỗi đề bài cậu gọi là a;b;c rồi áp dụng tính chất dãy tỉ số bằng nhau nhé
giải bài chia số 184 thành ba phần thứ nhất và phần thứ 2 tỉ lệ với 2 và 3 phần thứ nhất và phần thứ 3 tỉ lệ với 5 và7