Tìm (C) biết (C') là ảnh của (C) qua phép tịnh tiến vecto v(3;-1) và
(C'): (x-4)2 + y2 = 16
Trong mặt phẳng tọa độ Oxy cho vectơ v → = - 1 ; 2 , A 3 ; 5 , B - 1 ; 1 và đường thẳng d có phương trình x – 2 y + 3 = 0 .
a. Tìm tọa độ của các điểm A' , B' theo thứ tự là ảnh của A, B qua phép tịnh tiến theo vecto v →
b. Tìm tọa độ của điểm C sao cho A là ảnh của C qua phép tịnh tiến theo vectơ v →
c. Tìm phương trình của đường thẳng d' là ảnh của d qua phép tịnh tiến theo v .
c) Đường thẳng d có vecto pháp tuyến là n→(1;-2) nên 1 vecto chỉ phương của d là(2; 1)
=> Vecto v→ không cùng phương với vecto chỉ phương của đường thẳng d
=> Qua phép tịnh tiến v→ biến đường thẳng d thành đường thẳng d’ song song với d.
Nên đường thẳng d’ có dạng : x- 2y + m= 0
Lại có B(-1; 1) d nên B’(-2;3) d’
Thay tọa độ điểm B’ vào phương trình d’ ta được:
-2 -2.3 +m =0 ⇔ m= 8
Vậy phương trình đường thẳng d’ là:x- 2y + 8 = 0
Cho mặt phẳng tọa độ Oxy cho 4 điểm A(-1;2) B(3;-4) C(0;-5) D(-6;7)
a) tìm ảnh A, B, C, D qua phép tịnh tiến thao vecto v=(-2;1)
b) Tìm E, F sao cho TAB(E)=C ; TDC (F)=D
c) gọi I là trung điểm của AB. Tìm G sao cho I là ảnh của G qua phép tịnh tiến theo vecto DC
cho vecto v(-1;2) đường cong C có pt (x-2)^2 + (y-3)^2 = 9 tìm pt của đường cong C' là ảnh của C qua phép tịnh tiến theo v
(C) có \(\left\{{}\begin{matrix}I\left(2;3\right)\\R=3\end{matrix}\right.\)
\(T_{\overrightarrow{v}}\left(I\right)=I'\left(x',y'\right)\)\(\Rightarrow\left\{{}\begin{matrix}x'=x+a=2+\left(-1\right)=1\\y'=y+a=3+2=5\end{matrix}\right.\Rightarrow I'\left(1,5\right)\)
\(T_{\overrightarrow{v}}\left(C\right)=\left(C'\right)\) có \(\left\{{}\begin{matrix}I'\left(1,5\right)\\R=3\end{matrix}\right.\)
\(\Rightarrow\) \(\left(C'\right):\left(x-1\right)^2+\left(y-5\right)^2=3\)
Cho điểm M(-4;2) và vecto v =(3;-1). Tìm điểm N biết M là ảnh của N qua phép tịnh tiến theo vecto v.
\(T_{\overrightarrow{v}}\left(N\right)=M\Rightarrow\overrightarrow{NM}=\overrightarrow{v}\)
\(\Rightarrow\left\{{}\begin{matrix}x_N+3=-4\\y_N-1=2\end{matrix}\right.\) \(\Rightarrow N\left(-7;3\right)\)
cho tam giác đều A,B,C. Gọi M,N,P lần lượt là trung điểm của BC,CA,AB. a) Xác định ảnh của A,B qua phép tịnh tiến MC. b)Xác định ảnh của đường thẳng MP qua phép tịnh tiến vecto NA. c) Xác định ảnh của tam giác CMN qua phép tịnh tiến vecto CA. d)Xác định ảnh của hbh BMNP qua phép tịnh tiến (vecto BA- vecto BC)
Giải giúp mình với, gấp ạ
Cho đường tròn (C): x2 + y2 - 2x + 4y - 4 = 0. Tìm ảnh của (C) qua phép tịnh tiến theo vecto \(\overrightarrow{v}\) ( -3; 1)?
Đường tròn (C) tâm \(I\left(1;-2\right)\) bán kính \(R=3\)
Ảnh của đường tròn (C) là đường tròn (C') có tâm \(I'\left(x';y'\right)\) là ảnh của I qua phép tịnh tiến \(\overrightarrow{v}\) và bán kính \(R'=R=3\)
\(\left\{{}\begin{matrix}x'=-3+1=-2\\y'=1-2=-1\end{matrix}\right.\)
Phương trình (C'):
\(\left(x+2\right)^2+\left(y+1\right)^2=9\)
Tìm điểm M biết điểm N (-3;10) là ảnh của M qua phép tịnh tiến vecto v (4;1)
\(T_{\overrightarrow{v}}\left(N\right)=M\left(x',y'\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x'=x+a=-3+4=1\\y'=y+b=10+1=11\end{matrix}\right.\)
\(\Rightarrow M\left(1;11\right)\)
Cho hình vuông ABCD có tâm I.
a.Xác định hình H1 là ảnh của hình vuông ABCD qua phép tịnh tiến theo vecto AI.
b. Xác định hình H2 là ảnh H1 qua phép tịnh tiến vecto IB.
c. Có 1 phép tịnh tiến nào biến H2 thành hình vuông ABCD.
Trong mặt phẳng Oxy cho pt (C) : (x+3)2 + (y-1)2 =5 và v = (-3;1) . Viết pt đường tròn (C’) biết (C’) là ảnh của (C) qua phép đồng dạng có được bằng thực hiện liên tiế phép tịnh tiến theo vecto V và phép vị tự tâm O tỷ số k= 2.