cho (P): y=-x^2 và (d0 đi qua điểm I(0;-1) có hệ số góc k
a, cm (d) và(P) luôn cắt nhau tại hai đểm phân biệt
b, gọi x2,x1 là 2 nghiệm PT cm GTTĐ CỦA X1-X2 =2
c, cm tam giác OAB vuông
Xác định parabol \(y = {\rm{a}}{{\rm{x}}^2} + bx + 1\) , trong mỗi trường hợp sau:
a) Đi qua 2 điểm A(1; 0) và B(2; 4)
b) Đi qua điểm A(1; 0) và có trục đối xứng \(x = 1\)
c) Có đỉnh I(1; 2)
d) Đi qua điểm C(-1; 1) và có tung độ đỉnh -0,25
a) Đồ thị hàm số \(y = a{x^2} + bx + 1\) đi qua điểm A(1; 0) nên:
\(a{.1^2} + b.1 + 1 = 0 \Leftrightarrow a + b = - 1\)
Đồ thị hàm số \(y = a{x^2} + bx + 1\) đi qua điểm B(2; 4) nên:
\(a{.2^2} + 2b + 1 = 4 \Leftrightarrow 4a + 2b = 3\)
Từ 2 phương trình trên, ta có \(a = \frac{5}{2};b = \frac{{ - 7}}{2}\)
=> Hàm số cần tìm là \(y = \frac{5}{2}{x^2} - \frac{7}{2}x + 1\)
b) Đồ thị hàm số \(y = a{x^2} + bx + 1\) đi qua điểm A(1; 0) nên:
\(a{.1^2} + b.1 + 1 = 0 \Leftrightarrow a + b = - 1\)
Đồ thị hàm số \(y = a{x^2} + bx + 1\) có trục đối xứng x=1
\(\frac{{ - b}}{{2a}} = 1 \Leftrightarrow - b = 2a \Leftrightarrow 2a + b = 0\)
Từ 2 phương trình trên, ta có \(a = 1;b = - 2\)
=> Hàm số cần tìm là \(y = {x^2} - 2x + 1\)
c) Đồ thị hàm số \(y = a{x^2} + bx + 1\) có đỉnh \(I(1;2)\) nên:
\(\frac{{ - b}}{{2a}} = 1 \Leftrightarrow - b = 2a \Leftrightarrow 2a + b = 0\)
\(a{.1^2} + b.1 + 1 = 2 \Leftrightarrow a + b = 1\)
Từ 2 phương trình trên, ta có \(a = - 1;b = 2\)
=> Hàm số cần tìm là \(y = - {x^2} + 2x + 1\)
d) Đồ thị hàm số \(y = a{x^2} + bx + 1\) đi qua điểm C(-1; 1) nên:
\(a.{( - 1)^2} + b.( - 1) + 1 = 1 \Leftrightarrow a - b = 0 \Leftrightarrow a = b\)
Đồ thị hàm số \(y = a{x^2} + bx + 1\) có tung độ đỉnh là -0,25 nên:
\(\frac{{ - \Delta }}{{4a}} = - 0,25 \Leftrightarrow - \frac{{{b^2} - 4.a.1}}{{4a}} = - 0,25 \Leftrightarrow {b^2} - 4a = a \Leftrightarrow {b^2} = 5a\)
Thay a=b ta có:
\({b^2} = 5b \Leftrightarrow b=0\) hoặc \(b=5\)
Vì \(a \ne 0\) nên \(a=b=5\)
=> Hàm số cần tìm là \(y = 5{x^2} + 5x + 1\)
Tìm Parabol y = ax2 - 4x + c, biết rằng Parabol :
Đi qua hai điểm A(1; -2) và B(2; 3).
Có đỉnh I(-2; -2).
Có hoành độ đỉnh là -3 và đi qua điểm P(-2; 1).
Có trục đối xứng là đường thẳng x = 2 và cắt trục hoành tại điểm (3; 0).
a) Thay x=1 và y=-2 vào (P), ta được:
\(a\cdot1^2-4\cdot1+c=-2\)
\(\Leftrightarrow a-4+c=-2\)
hay a+c=-2+4=2
Thay x=2 và y=3 vào (P), ta được:
\(a\cdot2^2-4\cdot2+c=3\)
\(\Leftrightarrow4a-8+c=3\)
hay 4a+c=11
Ta có: \(\left\{{}\begin{matrix}a+c=2\\4a+c=11\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3a=-9\\a+c=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\c=2-a=2-3=-1\end{matrix}\right.\)
Vậy: (P): \(y=3x^2-4x-1\)
Cho parabol (P): y= -x2 và đường thẳng d đi qua điểm I(0; -1) có hệ số góc k. Viết phương trình đường thẳng (d).
Mục tiêu -500 sp mong giúp đỡ haha
Giúp vợi mọi người, mình cần gấp
bài 1. : Viết phương trình Parabol (P): y=x2 -bx +c khi biết: a)
(P) đi qua 3 điểm A(0;-1) , B(1;-1) và C(-1;1).
b) (P) đi qua điểm A(8;0) và có đỉnh I(6; 12)
bài 2. Viết phương trình Parabol (P) khi biết:
a) (P) đi qua 3 điểm A(1;0) , B(-1;6) và C(3;2).
b) (P) đi qua điểm A(2;3) và có đỉnh I(1, \(\frac{7}{2}\)) .
c) (P) đi qua điểm B(0;8) và có đỉnh I (3,-1).
d) (P) đi qua O(0;0) và có đỉnh I (3, \(\frac{-9}{2}\)) .
bài 3.Vẽ đồ thị và lập bảng biến thiên của hàm số
a) y= x2-2x
e) y= x2 -4x +4
f) y= -x2 -4x+1
g) \(y=\hept{\begin{cases}x^2-4x+5\left(x\ge1\right)\\x+1\left(x< 1\right)\end{cases}}\)
mình nghĩ pt (P) : y = ax^2 - bx + c chứ ?
a, (P) đi qua điểm A(0;-1) <=> \(c=-1\)
(P) đi qua điểm B(1;-1) <=> \(a-b+c=-1\)(1)
(P) đi qua điểm C(-1;1) <=> \(a+b+c=1\)(2)
Thay c = -1 vào (1) ; (2) ta được : \(a-b=0;a+b=2\Rightarrow a=1;b=1\)
Vậy pt Parabol có dạng \(x^2-x-1=y\)
Bài 1b
(P) đi qua điểm A(8;0) <=> \(64a-8b+c=0\)
(P) có đỉnh I(6;12) \(\Rightarrow\hept{\begin{cases}-\frac{b}{2a}=6\\36a-6b+c=-12\end{cases}}\Rightarrow a=3;b=-36;c=96\)
Vậy pt Parabol có dạng : \(9x^2+36x+96=y\)
tương tự nhé
Cho đường thẳng d: x - 1 1 = y - 2 - 2 = z - 2 1 và điểm A (1; 2; 1). Tìm bán kính của mặt cầu có tâm I nằm trên d, đi qua A và tiếp xúc với mặt phẳng (P): x - 2y + 2z + 1 = 0
A. R=2
B. R=4
C. R=1
D. R=3
Cho hai đường thẳng (d1):mx+(m-2)y+m+2=0 và (d2):(2-m)x+my-m-2=0
a) Tìm điểm cố định mà (d1) luôn đi qua và điểm cố định mà (d2) luôn đi qua
b) Chứng minh hai đường thẳng (d1) ,(d2) luôn cắt nhau tại một điểm I và khi m thay
đổi thì điểm I luôn thuộc một đường tròn cố định.
Cho đường thẳng d : x − 1 1 = y − 2 − 2 = z − 2 1 và điểm A (1; 2; 1). Tìm bán kính của mặt cầu có tâm I nằm trên d, đi qua A và tiếp xúc với mặt phẳng (P): x - 2 y + 2 z + 1 = 0
A. R = 2
B. R = 4
C. R = 1
D. R = 3
Trong không gian Oxyz với hệ tọa độ Oxyz, cho điểm I(0; -2; 1) và hai đường thẳng d 1 : x 4 = y + 2 2 = z - 1 - 1 , d 2 : x + 1 1 = y - 2 - 1 = z 2 . Viết phương trình đường thẳng đi qua I cắt d 1 và vuông góc với d 2 .
A. x 4 = y + 2 2 = z - 1 - 1
B. x 5 = y + 2 1 = z - 1 - 2
C. x 5 = y - 2 1 = z + 1 - 2
D. x 4 = y + 2 2 = z + 1 - 1