Tính giá trị của các biểu thức sau:
a) 2x - \(\frac{y\left(x^2-2\right)}{xy+y}\)tại x=0 ; y=-1
b) xy + y^2 z^2 + z^3 x^3 tại x=1 ; y=-1 và z=2
tính giá trị của biểu thức sau:
a)2x-\(\dfrac{y\left(x^2-2\right)}{xy+y}\)tại x=0;y=-1
b)A=4x^2-3IxI-2 tại x=2 và x=-3
c)B=5x^2-7y+6 tại x=-1/5;y=-3/7
a.\(x=0;y=-1\)
\(\Rightarrow2.0-\dfrac{-1\left(0^2-2\right)}{0.-1-1}=0-\dfrac{2}{-1}=2\)
b.\(x=2\)
\(\Rightarrow4.2^2-3\left|2\right|-2=16-6-2=8\)
\(x=-3\)
\(\Rightarrow4.\left(-3\right)^2-3\left|-3\right|-2=36-9-2=25\)
c.\(x=-\dfrac{1}{5};y=-\dfrac{3}{7}\)
\(\Rightarrow5.\left(-\dfrac{1}{5}\right)^2-7.\left(-\dfrac{3}{7}\right)+6=5.\dfrac{1}{25}+3+6=\dfrac{1}{5}+3+6=\dfrac{46}{5}\)
thay x=2 và biểu thức A ta đc
\(A=4.2^2-3.\left|2\right|-2=4.4-6-2=16-6-2=8\)
thay x=-3 biểu thức A ta đc
\(A=4.\left(-3\right)^2-3.\left|-3\right|-2=4.9-9-2=36-9-2=25\)
thay x=-1/5 ; y=-3/7 biểu thức B ta đc
\(B=5.\left(-\dfrac{1}{5}\right)^2-7.\left(-\dfrac{3}{7}\right)+6\)
\(B=5\cdot\dfrac{1}{25}+3+6\)
\(B=\dfrac{1}{5}+3+6=\dfrac{46}{5}\)
thay x =0 , y= -1 và biểu thức ta đc
\(0-\dfrac{\left(-1\right)\left(0^2-2\right)}{0.\left(-1\right)+\left(-1\right)}=0-\dfrac{2}{-1}=0+2=2\)
Rút gọn rồi tính giá trị của biểu thức tại \(x=\frac{1}{2};y=\frac{1}{3}\)
\(A=\left(\frac{4}{x-y}-\frac{x-y}{y^2}\right).\frac{y^2-xy}{x-3y}+\left(\frac{x}{2}-\frac{x^2-xy}{x-2y}\right):\frac{xy+y^2}{2x-4y}\)
\(A=\left(\frac{4}{x-y}-\frac{x-y}{y^2}\right).\frac{y^2-xy}{x-3y}+\left(\frac{x}{2}-\frac{x^2-xy}{x-2y}\right):\frac{xy+y^2}{2x-4y}\)
\(=\frac{4y^2-\left(x-y\right)^2}{y^2\left(x-y\right)}.\frac{y^2-xy}{x-3y}+\frac{x\left(x-2y\right)-2\left(x^2-xy\right)}{2\left(x-2y\right)}.\frac{2x-4y}{xy+y^2}\)
\(=\frac{3y^2+2xy-x^2}{y^2\left(x-y\right)}.\frac{y^2-xy}{x-3y}+\frac{-x^2}{2\left(x-2y\right)}.\frac{2x-4y}{xy+y^2}\)
\(=\frac{\left(x+y\right)\left(3y-x\right)}{y^2\left(x-y\right)}.\frac{y\left(y-x\right)}{x-3y}-\frac{x^2}{2\left(x-2y\right)}.\frac{2\left(x-2y\right)}{y\left(x+y\right)}\)
\(=\frac{\left(x+y\right)}{y}-\frac{x^2}{y\left(x+y\right)}\)
\(=\frac{\left(x+y\right)^2-x^2}{y\left(x+y\right)}=\frac{2xy+y^2}{y\left(x+y\right)}=\frac{2x+y}{x+y}\)
Giờ chỉ cần thế x, y vô nữa là xong nhé.
\(A=\left(\frac{4}{x-y}-\frac{x-y}{y^2}\right).\frac{y^2-xy}{x-3y}\)\(+\left(\frac{x}{2}-\frac{x^2-xy}{x-2y}\right):\frac{xy+y^2}{2x-4y}\)
\(=\left(\frac{4}{x-y}-\frac{x-y}{y^2}\right).\frac{y\left(y-x\right)}{x-3y}\)\(+\left(\frac{x}{2}-\frac{x\left(x-y\right)}{x-2y}\right):\frac{y\left(x+y\right)}{2\left(x-2y\right)}\)
\(=\frac{4y\left(y-x\right)}{\left(x-y\right)\left(x-3y\right)}-\frac{\left(x-y\right)y\left(y-x\right)}{y^2\left(x-3y\right)}\)\(+\frac{x.2\left(x-2y\right)}{2.y\left(x+y\right)}-\frac{x\left(x-y\right).2\left(x-2y\right)}{\left(x-2y\right).y\left(x+y\right)}\)
\(=\frac{-4y}{x-3y}+\frac{\left(x-y\right)^2}{y\left(x-3y\right)}+\frac{x\left(x-2y\right)}{y\left(x+y\right)}-\frac{2x\left(x-y\right)}{y\left(x+y\right)}\)
\(=\frac{-4y^2+x^2-2xy+y^2}{y\left(x-3y\right)}+\frac{x^2-2xy-2x^2+2xy}{y\left(x+y\right)}\)
\(=\frac{x^2-2xy-3y^2}{y\left(x-3y\right)}+\frac{-x^2}{y\left(x+y\right)}\)
\(=\frac{x^2+xy-3xy-3y^2}{y\left(x-3y\right)}-\frac{x^2}{y\left(x+y\right)}\)
\(=\frac{x\left(x+y\right)-3y\left(x+y\right)}{y\left(x-3y\right)}-\frac{x^2}{y\left(x+y\right)}\)
\(\frac{\left(x+y\right)\left(x-3y\right)}{y\left(x-3y\right)}-\frac{x^2}{y\left(x+y\right)}\)
\(=\frac{x+y}{y}-\frac{x^2}{y\left(x+y\right)}=\frac{\left(x+y\right)^2-x^2}{y\left(x+y\right)}\)
\(=\frac{x^2-2xy+y^2-x^2}{y\left(x+y\right)}=\frac{-2xy+y^2}{y\left(x+y\right)}\)
\(=\frac{y\left(y-2x\right)}{y\left(x+y\right)}=\frac{y-2x}{x+y}\)
Thay \(x=\frac{1}{2};y=\frac{1}{3}\)vào A ta có :
\(A=\frac{\frac{1}{3}-2.\frac{1}{2}}{\frac{1}{2}+\frac{1}{3}}=\frac{\frac{1}{3}-1}{\frac{3}{6}+\frac{2}{6}}=\frac{2}{3}:\frac{5}{6}=\frac{2.6}{3.5}=\frac{4}{5}\)
Vậy \(A=\frac{4}{5}\)tại \(x=\frac{1}{2};y=\frac{1}{3}\)
Ừ nhở chị sai từ chỗ \(\frac{\left(x+y\right)^2-x^2}{y\left(x+y\right)}=\frac{x^2+2xy+y^2-x^2}{y\left(x+y\right)}=\frac{y^2+2xy}{y\left(x+y\right)}\)em nhé
rút gọn rồi tính giá trị của biểu thức:
a, \(\left(2x-y\right)^2+\left(2x+y\right)^2\) tại \(x=\frac{1}{21};y=-0,3\)
b,\(\left(\frac{1}{7}xy+7yz\right)^2-\left(\frac{1}{7}xy-7yz\right)^2\)tại x=2; y=0,25; z=-4
a. \(=4x^2-4xy+y^2+4x^2-4xy+y^2=8x^2+2y^2\)
\(=8.\left(\frac{1}{21}\right)^2+4.\left(-0.3\right)^2=\frac{4169}{11025}\)
b, \(=\left(\frac{1}{7}xy+7yz+\frac{1}{7}xy-7yz\right)\left(\frac{1}{7}xy+7yz-\frac{1}{7}xy+7yz\right)\)
\(=\frac{2}{7}xy.14yz=4xy^2z=4.2.\left(0,25\right)^2.\left(-4\right)=-2\)
Rút gọn và tính giá trị của biểu thức tại x = -1,76 và y = 3/25
\(P=\left[\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\frac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\right]:\frac{x+1}{2x^2+y+2}\)
\(P=\left[\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\frac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\right]:\frac{x+1}{2x^2+y+2}\)
\(P=\left[\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{\left(x+y\right)\left(x-2y\right)}\right):\frac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+y\right)\left(x+1\right)}\right]:\frac{x+1}{2x^2+y+2}\)
\(P=\left(\frac{\left(x-y\right)\left(x+y\right)+x^2+y^2+y-2}{\left(x+y\right)\left(2y-x\right)}.\frac{\left(x+y\right)\left(x+1\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}\right):\frac{2x^2+y+2}{x+1}\)
\(P=\left(\frac{2x^2+y-2}{2y-x}.\frac{x+1}{2x^2+y-2}\right).\frac{1}{x+1}\)
\(P=\frac{1}{2y-x}\)
Tại \(x=-1,76\) và \(y=\frac{3}{25}\) thì giá trị của \(Q=\frac{1}{2}\)
Rút gọn và tính giá trị của biểu thức tại x = -1,76 và y = 3/25
\(P=\left[\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\frac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\right]:\frac{x+1}{2x^2+y+2}\)
Đặt \(A=\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\)
\(B=\frac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\)
\(C=\frac{x+1}{2x^2+y+2}\)
Ta có:
A = \(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-y^2-xy-y^2}=\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{\left(x-2y\right)\left(x+y\right)}=\frac{\left(x-y\right)\left(x+y\right)+x^2+y^2+y-2}{\left(2y-x\right)\left(x+y\right)}\)
=>A=\(\frac{x^2-y^2+x^2+y^2+y-2}{\left(2y-x\right)\left(x+y\right)}=\frac{2x^2+y-2}{\left(2y-x\right)\left(x+y\right)}\)
B=\(\frac{\left(2x^2\right)^2+2.2x^2.y+y^2-4}{x^2+xy+x+y}=\frac{\left(2x^2+y\right)^2-4}{x\left(x+y\right)+\left(x+y\right)}=\frac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+1\right)\left(x+y\right)}\)
=>\(P=\left(A:B\right):C\)
\(=\left[\frac{2x^2+y-2}{\left(2y-x\right)\left(x+y\right)}:\frac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+y\right)\left(x+1\right)}\right]:\frac{x+1}{2x^2+y+2}\)
\(=\frac{2x^2+y-2}{\left(2y-x\right)\left(x+y\right)}.\frac{\left(x+y\right)\left(x+1\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}.\frac{2x^2+y+2}{x+1}\)
\(=\frac{1}{2y-x}\)
=>\(P=\frac{1}{2y-x}\)
Thế x=-1,76 và y=3/25 vào P
=>\(P=\frac{1}{2.\frac{3}{25}-1,76}=\frac{1}{2}\)
1.Với giá trị nào của biến thì giá trị của biểu thức bằng 0
\(\frac{x+1}{7};\frac{3x+3}{5};\frac{3x\left(x-5\right)}{x-7};\frac{2x\left(x+1\right)}{3x+4}\)
2.Tính giá trị của các biểu thức sau:
\(A=\frac{a^2\left(a^2+b^2\right)\left(a^{\text{4}}+b^{\text{4 }}\right)\left(a^8+b^8\right)\left(a^2-3b\right)}{\left(a^{10}+b^{10}\right)}\)tại a=6;b=12
\(B=3xy\left(x+y\right)+2x^3y+2x^2y^2+5\)tại x+y=0
\(C=2x+2y+3xy\left(x+y\right)+5\left(x^3y^2+x^2y^3\right)+4\)tại x+y=0
Tính giá trị của biểu thức sau:
\(B=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\frac{2x^2}{\sqrt{x}}+y\sqrt{y}}{x\sqrt{x}+y\sqrt{y}}+\frac{3\sqrt{xy}-3y}{x-y}\) tại x=1997; y=30303
Tính giá trị của biểu thức sau:
\(B=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\frac{2x^2}{\sqrt{x}}+y\sqrt{y}}{x\sqrt{x}+y\sqrt{y}}+\frac{3\sqrt{xy}-3y}{x-y}\) tại x=1997; y=30303
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của các biến (với điều kiện xy\(\ne\)0;+ -3/2 y;x\(\ne\)-y
\(\frac{5x\left(2x-3y\right)^2}{3y\left(4x^2-9y^2\right)}:\frac{\left(2x^2+2xy\right)\left(2x-3y\right)}{2x^2y+5xy^2+3y^3}\)
Với điều kiện xy\(\ne\)0;+ -3/2 y;x\(\ne\)-y các phân thức có nghĩa. Ta có
\(\frac{5x\left(2x-3y\right)^2}{3y\left(4x^2-9y^2\right)}:\frac{\left(2x^2+2xy\right)\left(2x-3y\right)}{2x^2y+5xy^2+3y^3}\)\(=\)\(\frac{5x\left(2x-3y\right)^2.y\left(2x^2+5xy+3y^2\right)}{3y\left(4x^2-9y^2\right).2x\left(x+y\right).\left(2x-3y\right)}\)
\(=\)\(\frac{10xy\left(2x-3y\right)^2.\left(2x^2+2xy+3xy+3y^2\right)}{6xy\left(2x-3y\right).\left(2x+3y\right)\left(x+y\right)\left(2x-3y\right)}\)\(=\)\(\frac{10xy\left(2x-3y\right)^2\left(x+y\right).\left(2x+3y\right)}{6xy\left(2x-3y\right)^2.\left(2x+3y\right).\left(x+y\right)}\)
\(=\)\(\frac{5}{3}\)
ĐK \(\hept{\begin{cases}xy\ne0\\2x-3y\ne0,2x+3y\ne0\\x\ne-y\end{cases}}\)
\(=\frac{5x\left(2x-3y\right)^2}{3y\left(2x+3y\right)\left(2x-3y\right)}:\frac{2x\left(x+y\right)\left(2x-3y\right)}{xy\left(2x+3y\right)+y^2\left(2x+3y\right)}\)
\(=\frac{5x\left(2x-3y\right)}{3y\left(2x+3y\right)}:\frac{2x\left(x+y\right)\left(2x-3y\right)}{\left(2x+3y\right)\left(xy+y^2\right)}\)
\(=\frac{5x\left(2x-3y\right)}{3y\left(2x+3y\right)}.\frac{y\left(x+y\right)\left(2x+3y\right)}{2x\left(x+y\right)\left(2x-3y\right)}=\frac{5}{6}\)
Vậy giá trị của biểu thức không phụ thuộc vào biến