Xác định hệ số a, b để:
a. Đa thức A (x)= x2+ax+b có hai nghiệm là x=2; x=3
b. Đa thức B (x)= x3+ax2+bx+2 có hai nghiệm là x=-2; x=2
Bài 7. Xác định hệ số a,b để:
a. Đa thức A(x)=x2 + ax + b có hai nghiệm là x=2; x=3
b. Đa thức B(x)=x3 + ax2 + bx + 2 có hai nghiệm là x=-2; x=2
cho đa thức f(x)=ax^2+bx+c xác định hệ số a,b,c biết đa thức có 2 nghiệm x1=1: x2=2
`Answer:`
`f(x)=ax^2+bx+c`
Do đa thức `f(x)` có hai nghiệm là `x_1=1;x_2=2`
`=>(x-1)(x-2)=0`
`<=>x^2-2x-x+2=0`
`<=>x^2-3x+2=0`
Mà `f(x)=ax^2+bx+c`
Đồng nhất hệ số ta được \(\hept{\begin{cases}a=1\\b=-3\\c=2\end{cases}}\)
Cho hai đa thức biến x : A = ax^2 - 3x - 18 và B = 1 + 4x - 7x^2
a) Xác định bậc , hệ số cao nhất , hệ số tự do của B
b) Xác định hệ số a xuất hiện ở đa thức A , biết rằng A có một nghiệm là 2
c) Với a tìm được . tìm đa thức C sao cho C + B = A
a: Bậc là 2
Hệ số cao nhất là -7
Hệ số tự do là 1
b: Thay x=2 vào A=0, ta được:
\(a\cdot2^2-3\cdot2-18=0\)
\(\Leftrightarrow4a=24\)
hay a=6
c: Ta có: C+B=A
nên C=A-B
\(=6x^2-3x-18-1-4x+7x^2\)
\(=13x^2-7x-19\)
Xác định hệ số a,b để đa thức:
a) f(x) = x^3 - ax^2 - 9x + b có hai nghiệm là 1 và 3
b) g(x) = (2a + 3).x^2 - 5x + b có hai nghiệm là x = 2 và x =
c) h(x) = ax^3 + 6x^2 + bx + 6 có hai nghiệm là x = -2 và x = -3
Bài: a) Xác định đa thức f(x) = ax + b biết f(2) = - 4 ; F(3) = 5.
b) Xác định a và b biết nghiệm của đa thức G(x) = x2 – 1 là nghiệm của đa thức Q(x) = x3 + ax2 + bx – 2
Cho f(x)=ax^2+bx+c xác định a b c biết đa thức có hai nghiệm là x1=1 x2=2
a) Tìm số a để đa thức ax - 1/2 có nghiệm là x = 1/3
b) Xác định hệ số a,b của đa thức f (x) = ax + b biết f (1) = (-3) và f (2) = 7
a) Ta có a.1/3 - 1/2 = 0
=> a.1/3 = 1/2
=> a = 3/2
Vậy a = 3/2
b) Ta có : f(1) = a.1 + b = a + b = -3
=> a + b = -3 (1)
Lại có f(2) = a.2 + b = 2 x a + b = 7
=> 2 x a + b = 7 (2)
Khi đó 2 x a + b - (a + b) = 7 - (-3)
=> 2 x a - a = 10
=> a = 10
=> b = -13
Vậy a = 10 ; b = -13
a ) Ta có : \(a\cdot\frac{1}{3}-\frac{1}{2}=0\)
\(\Rightarrow a\cdot\frac{1}{3}=\frac{1}{2}\)
\(\Rightarrow a=\frac{3}{2}\)
Vậy \(a=\frac{3}{2}\)
b ) Ta có : \(f\left(1\right)=a\cdot1+b=a+b=-3\)
\(\Rightarrow a+b=-3\)(1)
Lại có : \(f\left(2\right)=a\cdot2+b=2\cdot a+b=7\)
\(\Rightarrow2\cdot a+b=7\)(2)
Khi đó : \(2\cdot a+b-\left(a+b\right)=7-\left(3\right)\)
\(\Rightarrow2\cdot a-a=10\)
\(\Rightarrow a=10;b=-13\)
Vậy ...
cho hai đa thức f(x)= (x-1)(x+3) và g(x)=x^3-ax^2+bx-3
xác định hệ số a,b của đa thức g(x) biết nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x)
mik nghĩ
bn có thể tham khảo ở link :
https://olm.vn/hoi-dap/question/902782.html
~~ hok tốt ~
Ta có :
\(\left(x-1\right)\left(x+3\right)=0\) ( nghiệm của đa thức \(f\left(x\right)\) )
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}}\)
Lại có : Nghiệm của đa thức \(f\left(x\right)\) cũng là nghiệm của đa thức \(g\left(x\right)\)
+) Thay \(x=1\) vào nghiệm của đa thức \(g\left(x\right)=x^3-ax^2+bx-3=0\) ta được :
\(1^3-a.1^2+b.1-3=0\)
\(\Leftrightarrow\)\(1-a+b-3=0\)
\(\Leftrightarrow\)\(a-b=1-3\)
\(\Leftrightarrow\)\(a-b=-2\) \(\left(1\right)\)
+) Thay \(x=-3\) vào nghiệm của đa thức \(g\left(x\right)=x^3-ax^2+bx-3=0\) ta được :
\(\left(-3\right)^3-a.\left(-3\right)^2+b.\left(-3\right)-3=0\)
\(\Leftrightarrow\)\(-27-9a+b.\left(-3\right)-3=0\)
\(\Leftrightarrow\)\(9a-3b=-27-3\)
\(\Leftrightarrow\)\(9a-3b=-30\)
\(\Leftrightarrow\)\(\left(-3\right)\left(-3a+b\right)=\left(-3\right).10\)
\(\Leftrightarrow\)\(b-3a=10\) \(\left(2\right)\)
Từ (1) và (2) suy ra :
\(a-b+b-3a=-2+10\)
\(\Leftrightarrow\)\(-2a=8\)
\(\Leftrightarrow\)\(a=\frac{8}{-2}\)
\(\Leftrightarrow\)\(a=-4\)
Do đó :
\(a-b=-2\)
\(\Leftrightarrow\)\(-4-b=-2\)
\(\Leftrightarrow\)\(b=2-4\)
\(\Leftrightarrow\)\(b=-2\)
Vậy các hệ số a, b là \(a=-4\) và \(b=-2\)
Chúc bạn học tốt ~
cho đa thức f(x)=x^3+ax^2+bx-2 xác định các hệ số a, biết đa thức có nghiệm x1=-1 và x2=1
ta có Do x=1 và x=-1 là nghiệm của đa thức nên
\(\hept{\begin{cases}f\left(1\right)=0\\f\left(-1\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}a+b-1=0\\a-b-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=2\\b=-1\end{cases}}}}\)
Vậy a=2 và b=-1