Cho tam giác ABC biết phương trình AB,BC lần lượt là 2x+y-1=0 ; x-3y-5=0
a) tìm tọa độ B
b) viết phương trình AC biết M(-3,1) là trung điểm của AC
Lập phương trình đường thẳng chứa các cạnh của tam giác ABC biết A(1;-1), các đường trung trực của AB và BC lần lượt có phương trình là \(\Delta\): 2x - y + 1 = 0 và \(\Delta'\): x + 3y - 1 = 0
Đường thẳng AB nhận \(\overrightarrow{n}=\left(1;2\right)\) làm vecto pháp tuyến
AB đi qua A (1; -1) nên nó có phương trình là
x - 1 + 2 (y + 1) = 0 hay x + 2y + 1 = 0
Gọi M là trung điểm của AB ⇒ M ∈ Δ, tọa độ của M có dạng
M (t ; 2t + 1) với t là số thực và \(\overrightarrow{AM}=\left(t-1;2t+2\right)\)
⇒ AM ⊥ Δ
⇒ \(\overrightarrow{AM}.\overrightarrow{n}=0\)
⇒ t + 1 + 2. (2t + 2) = 0
⇒ t = -1
Vậy M (- 1; - 1)
M là trung điểm của AB => Tọa độ B
Làm tương tự như thế sẽ suy ra tọa độ C
Cho tam giác ABC. Biết ba cạnh của tam giác AB,AC,BC. có phương trình lần lượt là 3x+4y-2=0, y-2=0, x-2=0. Phương trình tổng quát đường phân giác trong AD của tam giác ABC
A. 3x-y+8=0
B. x+2y=0
C. x+3y-8=0
D. x+3y-4=0
trong mặt phẳng hệ tọa độ Oxy cho tam giác ABC cân tại A . biết phương trình các đường thẳng AB,BC lần lượt là x-7y+14=0 và 2x+y-2=0. viết phương trình cạnh AC , biết đường thẳng AC đi qua M(4,0)
\(cosB=\dfrac{\left|1.2+\left(-7\right).1\right|}{\sqrt{1^2+\left(-7\right)^2}.\sqrt{2^2+1^2}}=\dfrac{1}{\sqrt{10}}\)
Gọi vtpt của AC có tọa độ \(\left(a;b\right)\)
\(\Rightarrow cosC=cosB=\dfrac{1}{\sqrt{10}}=\dfrac{\left|2a+b\right|}{\sqrt{a^2+b^2}.\sqrt{2^2+1^2}}=\dfrac{1}{\sqrt{10}}\)
\(\Leftrightarrow\sqrt{2}\left|2a+b\right|=\sqrt{a^2+b^2}\)
\(\Leftrightarrow2\left(2a+b\right)^2=a^2+b^2\)
\(\Leftrightarrow7a^2+8ab+b^2=0\Leftrightarrow\left(a+b\right)\left(7a+b\right)=0\)
Chọn \(a=1\Rightarrow\left[{}\begin{matrix}b=-1\\b=-7\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left(a;b\right)=\left(1;-1\right)\\\left(a;b\right)=\left(1;-7\right)\end{matrix}\right.\)
(Trường hợp \(\left(a;b\right)=\left(1-;7\right)\) loại do khi đó AC song song AB, vô lý)
\(\Rightarrow\) Phương trình AC: \(1\left(x-4\right)-1\left(y-0\right)=0\)
Cho M (0; 2), N (1; 0), P (−1; −1) lần lượt là trung điểm các cạnh BC, CA và AB của tam giác ABC. Phương trình đường thẳng AB của tam giác ABC là:
A. y = − 2 x + 3
B. y = 2 x + 3
C. y = − 2 x – 3
D. y = 2 x – 1
Giả sử MN: y = a x + b
Ta có N thuộc MN 0 = a . 1 + b ⇔ a = − b
M thuộc MN 1 = a . 0 + b ⇔ b = 2 ⇔ a = − 2 ⇒ b = 2
Do đó MN: y = − 2 x + 2
Vì M, N lần lượt là trung điểm của các cạnh BC, CA của tam giác ABC nên MN là đường trung bình của tam giác ABC MN // AB
Suy ra AB có dạng: y = − 2 x + b ’ ( b ’ ≠ 2 )
Vì P là trung điểm của AB nên AB đi qua P (−1; −1 )
⇔ − 1 = − 2 ( − 1 ) + b ’ ⇒ b ’ = − 3 ( t / m )
Vậy AB: y = − 2 x – 3
Đáp án cần chọn là: C
cho tam giác ABC biết phương trình các cạnh AB, AC, BC lần lượt nằm trên các đường thẳng (d1): 2x + y -11 =0; (d2): x + 4y -2 =0; (d3): 3x - 2y + 8=0. Tìm tọa độ các điểm A, B, C
A là giao của (d1) và (d2) nên tọa độ A là nghiệm:
\(\left\{{}\begin{matrix}2x+y-11=0\\x+4y-2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=6\\y=-1\end{matrix}\right.\) \(\Rightarrow A\left(6;-1\right)\)
B là giao của (d1) và (d3) nên tọa độ B là nghiệm:
\(\left\{{}\begin{matrix}2x+y-11=0\\2x-2y+8=0\end{matrix}\right.\) \(\left\{{}\begin{matrix}x=2\\y=7\end{matrix}\right.\) \(\Rightarrow B\left(2;7\right)\)
C là giao của (d2) và (d3) nên tọa độ C là nghiệm:
\(\left\{{}\begin{matrix}x+4y-2=0\\3x-2y+8=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\) \(\Rightarrow C\left(-2;1\right)\)
1. Trong mặt phẳng Oxy cho tam giác ABC có trọng tâm G(−2; 0) biết phương trình các cạnh AB, AC theo thứ tự là 4x+y+14=0; 2x+5y-2=0. Tìm tọa độ các đỉnh A, B, C.
2.Lập phương trình các cạnh AB, AC của tam giác ABC biết đường tuyến CM có phương trình 2x+y-6=0, A(1; 1) và cạnh BC có phương trình x+y-6=0
Cho tam giác ABC, biết phương trình ba cạnh của tam giác là AB: 2x – 3y – 1 = 0, BC: 2x + 5y – 9 = 0, CA: 3x – 2y + 1 = 0. Tọa độ trọng tâm của tam giác ABC là:
A. 32 57 ; 29 57
B. - 4 57 ; - 25 57
C. - 1 12 ; 3
D. 3 ; 4
Cho tam giác ABC với H là trực tâm. Biết phương trình đường thẳng AB, BH và AH lần lượt là 4x + y – 12 = 0, 5x – 4y – 15 = 0 và 2x + 2y – 9 = 0. Hãy viết phương trình hai đường thẳng chứa hai cạnh còn lại và đường cao thứ ba.
Trực tâm H là giao điểm của BH và AH ⇒ tọa độ H là nghiệm của hệ:
A là giao điểm của AB và AH nên tọa độ A là nghiệm của hệ phương trình:
B là giao điểm BH và AB nên tọa độ điểm B là nghiệm của hệ:
+ AC ⊥ HB, mà HB có một vtpt là (5; -4)⇒ AC nhận (4; 5) là một vtpt
AC đi qua
⇒ Phương trình đường thẳng AC: hay 4x + 5y – 20 = 0.
+ CH ⊥ AB, AB có một vtpt là (4; 1) ⇒ CH nhận (1; -4) là một vtpt
CH đi qua
⇒ Phương trình đường thẳng CH: hay CH: 3x – 12y - 1 = 0.
+ BC ⊥ AH , mà AH nhận (2; 2) là một vtpt
⇒ BC nhận (1; -1) là một vtpt
BC đi qua B(3; 0)
⇒ Phương trình đường thẳng BC: 1(x - 3) – 1(y – 0) = 0 hay x – y – 3 = 0.
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC cân tại B với A(1;-1), C(3;5). Điểm B nằm trên đường thẳng d: 2x - y = 0. Phương trình các đường thẳng AB, BC lần lượt là ax + by - 24 = 0, cx + dy + 8 = 0. Tính giá trị biểu thức a.b.c.d.
Giả sử I(xI;yI) là trung điểm của AC
Vì tam giác ABC cân tại B nên BI ⊥ AC. Phương trình đường thẳng BI đi qua I(2;2) nhận làm VTPT là:
2.(x - 2) + 6.(y - 2) = 0 ⇔ 2x - 4 + 6y - 12 = 0 ⇔ 2x + 6y - 16 = 0 ⇔ x + 3y - 8 = 0
Tọa độ giao điểm B của BI và d là nghiệm của hệ phương trình:
Phương trình đường thẳng AB đi qua A(1;-1) nhận làm VTPT là:
23.(x - 1) - 1.(y + 1) = 0 ⇔ 23x - 23 - y - 1 = 0 ⇔ 23x - y - 24 = 0
⇒ a = 23; b = -1
Phương trình đường thẳng BC đi qua C(3;5) nhận làm VTPT là:
19.(x - 3) + (-13).(y - 5) = 0 ⇔ 19x - 57 - 13y + 65 = 0 ⇔ 19x - 13y + 8 = 0
⇒ c = 19; d = -13
⇒ a.b.c.d = 23.(-1).19.(-13) = 5681
Vậy a.b.c.d = 5681.
Lập phương trình tham số của AB, AC và phương trình tổng quát BC của tam giác ABC biết trung điểm của AB là M(-3;4), hai đường cao kẻ từ A và B lần lượt có phương trình 2x-5y+2 =0 và 10-x+3y =5