cho 2 phương trình x^2 - 3mx +2m^2 = 0 ; x^2 - (m+3)x + 2m + 2 = 0. Xác định giá trị của m để 2 phương trình có 1 nghiệm chung
Cho phương trình 3mx^2+2(2m+1)x+m=0. Xác định m để phương trình có 2 nghiệm âm
Cho 2 bất phương trình: 3mx - 2m > x + 1 (1)
m - 2x < 0 (2)
Tìm m để 2 bất phương trình có chung 1 tập nghiệm
Tìm m để :
a. Phương trình \(x^2-\left(2m+1\right)x+m^2-3=0\) có nghiệm kép
b. Phương trình \(x^2-3mx+m-2=0\) vô nghiệm
c. Phương trình \(x^2-2\left(m-1\right)x+m^2=0\) có nghiệm
a: \(\Leftrightarrow\left(2m+1\right)^2-4\left(m^2-3\right)=0\)
\(\Leftrightarrow4m^2+4m+1-4m^2+12=0\)
=>4m=-13
hay m=-13/4
c: \(\Leftrightarrow\left(2m-2\right)^2-4m^2>=0\)
\(\Leftrightarrow4m^2-8m+4-4m^2>=0\)
=>-8m>=-4
hay m<=1/2
1/ Cho phương trình: 3mx^2+2(2m+1)+m=0
Xác định m để phương trình có 2 nghiệm âm
2/ Tìm m để phương trình: (m-1)x^2+2x+m=0 có ít nhất 1 nghiệm ko âm
Cho 2 bất phương trình :
\(3mx-2m>x+1;m-2x< 0\)
Tìm m để hai bất phương trình trên có cùng một tập nghiệm.
bpt (1) : x> \(\frac{2m}{3m-1}\); bpt (2) : x > \(\frac{m}{2}\)
de 2 bpt co cung tap nghiem thi \(\frac{2m}{3m-1}\)= \(\frac{m}{2}\)(3) voi dk m # \(\frac{1}{3}\)
giai pt (3) tim duoc m= 0 , m = \(\frac{5}{3}\)thoa dieu kien m # \(\frac{1}{3}\)
Mình cần gấp nha, cảm ơn trước nhiều!
Cho phương trình: (m - 1)x2 - 3mx + 2m + 1 = 0 với x là ẩn số, m là tham số.
Xác định m để phương trình có hai nghiệm phân biệt sao cho x1 + 2x22 = 1.
Đáp án:
a) Thay m=3
x² - 2(3-1)x + 3² -6=0
⇔ x² - 4x + 3=0
⇔ x² -3x -x + 3 = 0
⇔ x(x-3) - (x-3) = 0
⇔(x-3) (x-1) =0
⇒ x-3 = 0 hoặc x-1 =0
⇒ x= 3 hoặc x= 1
b) Ta có Δ'= (m-1)² - m² + 6 = m² -2m + 1 - m² + 6 = -2m + 7
Để pt có 2 nghiệm thì Δ' ≥ 0 hay -2m + 7≥ 0
⇒ m ≤ 3,5
Áp dụng hệ thức vi ét cho pt trên ta có
x1x1 + x2x2 = 2(m-1)
x1x1 x2x2 = m2m2 -6
Ta có x21x12 + x22x22 = 16
⇔ x21x12 + x22x22 + 2x1x1 x2x2 = 16 + 2 x1x1 x2x2
⇔(x1+x2)2x1+x2)2 = 16 + 2 x1x1 x2x2
Thay vào ta đc
4 (m-1)² = 16 + 2 (m² - 6)
⇔4 ( m² - 2m + 1) = 16 + 2m² -12
⇔ 4m² - 8m + 4 = 16 + 2m² -12
⇔ 2m² -8m =0
⇔ m² - 4m = 0
⇔ m( m-4) =0
⇒ m=0 hoặc m-4 = 0
⇒m=0 (TM) hoặc m=4 (KTM)
Vậy m =0
Chắc bạn nhầm đề bài rồi bạn nhé, dù sao mình cũng cảm ơn bạn!
cho phương trình 3mx2 +2(2m+1)x+m=0 . Xác định m để phương trình co 2 nghiệm âm
TH1: m=0
Pt sẽ là 2x=0
=>x=0(loại)
TH2: m<>0
\(\text{Δ}=\left(4m+2\right)^2-12m^2\)
\(=4m^2+16m+4\)
\(=4m^2+16m+16-12=\left(2m+4\right)^2-12\)
Để phương trình có hai nghiệm âm thì:
\(\left\{{}\begin{matrix}\left(2m+4\right)^2>=12\\\dfrac{-2m-1}{3m}< 0\\\dfrac{m}{3m}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m+2\right)^2>=3\\\dfrac{2m+1}{m}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\in(-\infty;-\sqrt{3}-2]\cup[\sqrt{3}-2;+\infty)\\m\in\left(-\infty;-\dfrac{1}{2}\right)\cup\left(0;+\infty\right)\end{matrix}\right.\)
\(\Leftrightarrow m\in\left(-\infty;-\dfrac{1}{2}\right)\cup\left(0;+\infty\right)\)
Cho hệ phương trình .
\(\hept{\begin{cases}3mx-y=3m^2\\x+my=2m^2\end{cases}-2m+1}\)
Tìm hệ thức liên hệ giữa x,y không phụ thuộc vào m
Bạn kiểm tra lại đề bài.
Cho hệ phương trình:
\(\hept{\begin{cases}3mx-y=3m^2-2m+1\\x+my=2m^2\end{cases}}\)
Tìm hệ thức liên hệ giữa x,y không phụ thuộc vào m
Hệ <=> \(\hept{\begin{cases}3mx-y=3m^2-2m+1\\3mx+3m^2y=6m^3\end{cases}}\)
Lấy pt dưới trừ phương trình trên ta có: \(\left(3m^2+1\right)y=6m^3-3m^2+2m-1\)
<=> \(\left(3m^2+1\right)y=\left(2m-1\right)\left(3m^2+1\right)\)
<=> \(y=2m-1\)
<=> \(m=\frac{y+1}{2}\)
Thế vào ta có: \(x+\frac{y+1}{2}.y=2\left(\frac{y+1}{2}\right)^2\)
<=> \(2x-y-1=0\) không phụ thuộc vào x
Tìm m để phương trình \(x^2+3mx+2m^2=\frac{x^4+x^3}{2}\) có 4 nghiệm phân biệt