TH1: m=0
Pt sẽ là 2x=0
=>x=0(loại)
TH2: m<>0
\(\text{Δ}=\left(4m+2\right)^2-12m^2\)
\(=4m^2+16m+4\)
\(=4m^2+16m+16-12=\left(2m+4\right)^2-12\)
Để phương trình có hai nghiệm âm thì:
\(\left\{{}\begin{matrix}\left(2m+4\right)^2>=12\\\dfrac{-2m-1}{3m}< 0\\\dfrac{m}{3m}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m+2\right)^2>=3\\\dfrac{2m+1}{m}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\in(-\infty;-\sqrt{3}-2]\cup[\sqrt{3}-2;+\infty)\\m\in\left(-\infty;-\dfrac{1}{2}\right)\cup\left(0;+\infty\right)\end{matrix}\right.\)
\(\Leftrightarrow m\in\left(-\infty;-\dfrac{1}{2}\right)\cup\left(0;+\infty\right)\)