Δ=(2m-1)^2-4*2*(m-1)
=4m^2-4m+1-8m+8
=4m^2-12m+9=(2m-3)^2>=0
=>PT luôn có 2 nghiệm
4x1^2+4x2^2+2x1x2=0
=>4[(x1+x2)^2-2x1x2]+m-1=0
=>4[(-2m+1)^2/4-2*(m-1)/2]+m-1=0
=>(2m-1)^2-4(m-1)+m-1=0
=>4m^2-4m+1-3m+3=0
=>4m^2-7m+4=0
=>\(m\in\varnothing\)
Δ=(2m-1)^2-4*2*(m-1)
=4m^2-4m+1-8m+8
=4m^2-12m+9=(2m-3)^2>=0
=>PT luôn có 2 nghiệm
4x1^2+4x2^2+2x1x2=0
=>4[(x1+x2)^2-2x1x2]+m-1=0
=>4[(-2m+1)^2/4-2*(m-1)/2]+m-1=0
=>(2m-1)^2-4(m-1)+m-1=0
=>4m^2-4m+1-3m+3=0
=>4m^2-7m+4=0
=>\(m\in\varnothing\)
Cho phương trình x^2 -2 (m+1)x +2m+1 =0 Tìm m để phương trình có 2 nghiệm thỏa mãn 2x1^2 -x2 =1
Cho phương trình x2 + 2(m - 1)x - 2m + 5 =0 ( m là tham số). Tìm giá trị của m để phương trình có hai nghiệm x1; x2 thỏa mãn 2x1 + 3x2 = -5
Cho phương trình x2 - 2(m + 3)x + m2 + 3 = 0 Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn (2x1 - 1)(2x2 - 1) = 9
cho phương trình x^2-(2m+1)x+m-1=0.Tìm m để phương trình có hai nghiệm phân biệt thỏa mãn điều kiện 3x1-4x2=12
Cho pt x²-2(m+1)+6m-4=0 (1)(với m là tham số)
a, chứng minh rằng phương trình (1) luôn có 2 nghiệm phân biệt với mọi m
b, Tìm m để pt (1) có 2 nghiệm x1;x2 thỏa mãn (2m−2)x1+x22−4x2=4
Cho phương trình x^2-2x-m^2-1=0 tìm m để phương trình có 2 nghiệm x1,x2 thỏa mãn x1^2+x2^2=20
1. Cho phương trình: x2 – 2(2m – 1)x + 8m - 8 = 0.(1)
a) Giải (1) khi m = 2.
b, Tìm m để phương trình có hai nghiệm phân biệt
c) Tìm m để phương trình có hai nghiệm x1, x2 thỏa mãn A = đạt giá trị nhỏ nhất
Cho phương trình: \(x^2\) - (2m+3)x - 2m - 4 = 0 (m là tham số).
a) Tìm m để phương trình có 2 nghiệm phân biệt.
b) Tìm m phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn |x1| + |x2| = 5
Tìm m để phương trình x^2-(3m-1)x+2m^2-m=0 có nghiệm x1, x2 thỏa mãn x1=x2^2