Cho tam giác vuông tại A, biết cạnh góc vuông AB=15cm; hình chiếu của AB lên cạnh huyền BC là BH=9cm. Tính diện tích tam giác ?
Giúp mình v mình cảm ơn nhiều <3
Cho tam giác ABC vuông tại A có AH là đường cao. Từ H vẽ HD vuông góc với cạnh AB tại D, vẽ hE vuông góc với cạnh AC tại E. Biết AB = 15cm, BC = 25cm.
1)Tính độ dài cạnh AC và diện tích tam giác ABC.
2)Chứng minh tứ giác ADHE là hình chữ nhật.
3)Trên tia đối của AC lấy điểm F sao cho AF = AE. Chứng minh tứ giác AFDH là hình bình hành.
4)Gọi K là điểm đối xứng của B qua A, gọi M là trung điểm của AH. Chứng minh CM vuông góc HK.
1: AC=20cm
\(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{15\cdot20}{2}=150\left(cm^2\right)\)
2: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
Do đó: ADHE là hình chữ nhật
3: Xét tứ giác AFDH có
AF//DH
AF=DH
Do đó: AFDH là hình bình hành
Cho tam giác ABC vuông tại A, có BC = 15cm. Tính độ dài hai cạnh góc vuông và đường cao AH, biết AB = \(\dfrac{3}{4}\) AC
Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC=12\left(cm\right)\)
\(\Leftrightarrow AB=9\left(cm\right)\)
hay AH=7,2(cm)
AB=3/4AC
Theo pytago ta có: AB²+AC²=BC²
(¾AC)²+AC²=15²
=>AC=12
=>AB=¾.12=9
AB.AC=AH.BC( HỆ THỨC LƯỢNG)
=>AH=7.2
Cho tam giác ABC cân tại A. Tia phân giác góc BAC cắt cạnh BC tại M. ME vuông góc với AB tại E, MF vuông góc với AC tại F Cho AB=AC=13cm , BC=15cm. Tính AM
Ta có:
AM là phân giác của \(\widehat{BAC}\)
Mà trong tam giác cân đường phân giác xuất phát từ đỉnh đối diện với cạnh đáy đồng thời là cũng là đướng trung tuyến ứng với cạnh đáy
⇒M là trung điểm của BC
⇒MC=MB=\(\dfrac{BC}{2}\)=\(\dfrac{15}{2}\)=7,5
Mặc khác trong một tam giác cân đường trung tuyến ứng với cạnh đáy đồng thời là đường trung trực của cạnh đó
Do đó AM là đường trung trực của đoạn thẳng BC
Áp dụng định lý Py-ta-go cho ΔAMC vuông tại M ta có:
AC2=AM2+MC2
132=AM2+7,52
169=AM2+56,25
hay AM2=169-56,25=112,75
⇒AM=\(\sqrt{112,75}\)\(\approx\)10,6
Vậy AM\(\approx\)10,6
1) Cho tam giác ABC vuông tại A,đường phân giác AD.Tính độ dài AB,A C biết DB=15cm,DC=20cm
2) Cho tam giác ABC vuông tại A ,AB=15cm,AC=20cm,đường cao AH,tia phân giác của góc HAB cắt cạnh HB tại D ,tia phân giác của góc HAC cắt HC tại E.
a) Tính độ dài AH
b) Tính độ dài HD,HE
Bài 1:
Xét ΔABC có AD là phân giác
nen AB/BD=AC/CD
=>AB/3=AC/4
Đặt AB/3=AC/4=k
=>AB=3k; AC=4k
Ta có: \(AB^2+AC^2=BC^2\)
\(\Leftrightarrow25k^2=35^2\)
=>k2=49
=>k=7
=>AB=21cm; AC=28cm
Cho tam giác ABC vuông tại A, có các cạnh góc vuông AB=15cm, AC=20cm. Từ C kẻ đường vuông góc với cạnh huyền, đường này cắt đường thẳng AB tại D. Tính AD và CD.
62515=1253(cm)⇒AD=BD−AB=1253−15=803(cm)⇒CD=DA.DB=803.1253=1003(cm)" role="presentation" style="border:0px; direction:ltr; display:inline-table; float:none; font-size:18px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; text-align:left; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
Cho tam giác ABC vuông tại A, có các cạnh góc vuông AB= 15cm, AC=20cm. từ điểm C kẻ đường vuông góc với cạnh huyền, đường này cách đường thẳng AB tại D. Tính AD và CD
Cho tam giác ABC vuông tại A có cạnh góc vuông AB= 15cm, cạnh huyền BC= 25cm. Kẻ đường cao AH, tính độ dài đoạn HC.
AC=căn 25^2-15^2=20cm
HC=AC^2/BC=20^2/25=16cm
cho tam giác abc vuông tại a (ab<ac).vẽ ah vuông góc với bc tại h.
a/chứng minh tam giác HAC đồng dạng tam giác ABC
b/giả sử AB=15cm,AC=20cm.tính độ dài các cạnh AH
c/vẽ tia phân giác của góc BAH cắt cạnh BH tại D.chứng minh BD/HD=BC/AC.
giải giúp mình với ạ.
a. Xét tam giác HAC và tam giác ABC, có:
\(\widehat{C}\) : chung
\(\widehat{AHC}=\widehat{BAC}=90^o\)
Vậy tam giác \(HAC\sim\) tam giác \(ABC\) ( g.g )
b.\(\Rightarrow\dfrac{AH}{AB}=\dfrac{AC}{BC}\) (1)
Áp dụng định lý pytago tam giác ABC, ta có:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25\left(cm\right)\)
\(\left(1\right)\Leftrightarrow AH=\dfrac{AC.AB}{BC}=\dfrac{20.15}{25}=12\left(cm\right)\)
c. Tam giác AHB có phân giác AD:
\(\Rightarrow\dfrac{AH}{AB}=\dfrac{HD}{BD}\) (2)
(1)(2) \(\Rightarrow\dfrac{HD}{BD}=\dfrac{AC}{BC}\) hay \(\dfrac{BD}{HD}=\dfrac{BC}{AC}\)
Câu 3: (3,0 điểm) Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E.
a) Chứng minh: tam giác ABD= tam giác EBD từ đó suy ra AB = EB.
b) Cho AB = 12cm, AC = 15cm. Tính độ dài cạnh BC.
c) Cho góc B = 600. Tính góc ADE .
d) Chứng minh: DA < DC.
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó:ΔABD=ΔEBD
Suy ra: BA=BE
b: \(BC=\sqrt{12^2+15^2}=3\sqrt{41}\left(cm\right)\)
c: \(\widehat{ADE}=180^0-60^0=120^0\)
d: Ta có: DA=DE
mà DE<DC
nên DA<DC
Cho tam giác ABC vuông tại A có AB =15cm, AC =20cm. Vẽ AH vuông góc với BC tại H.
a) Chứng minh tam gics HBA đồng dng tam giác ABC
b) Tính độ dài các cạnh BC, AH.
c) Trên cạnh HC lấy điểm E sao cho HE = HA, qua E vẽ đường thẳng vuông góc với cạnh BC cắt cạnh AC tại M, qua C vẽ đường thẳng vuông góc với cạnh BC cắt tia phân giác của góc MEC tại F. Chứng minh ba điểm H, M, F thẳng hàng.
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: BC=căn 15^2+20^2=25cm
AH=15*20/25=12cm