Cho tam giác ABC có gốc A=100 độ; gốc B=40 độ. Vẽ tia Ax là tia đối của tia AB, tia Ai là tia phân giác của gốc CA X. Chứng minh AI // BC
Cho tam giác nhọn ABC có gốc A=60 độ , trực tâm H .Gọi M là điểm đối xứng với H qua BC
a, Chứng minh tam giác BHC=tam giác BMC
b, Tính gốc BMC
a,ta có :M đối xứng vs H qua BC
suy ra BC là đường trung trực của đoạn thẳng BC
mà B thuộc đường trung trực của đoạn thẳng BC =>BM=BH
và C thuộc đường trung trực của đoạn thẳng BC =>CM=CH
xét tam giác BMC và tam giác BHC có:BM=BH (chứng minh trên),MC=MH chứng minh trên BC chung
=> tam giác BMC=BHC
b,trọng tâm gica ABC có AM là đường trung trực đồng thời là đường cao của cạnh BC => tam giác ABC cân
=>góc ABC =góc BCA =(180 độ -60 độ ):2=60 độ
mà BM và CM là đường phân giác (tam giác ABC cân)suy ra góc MBC =góc MBC =60 độ :2=30 độ
=>góc BMC=180 độ -30 độ+30 độ=120độ
mà góc BCM=góc BCH =>góc BHC=120độ
Cho tam giác ABC có AB=6cm AC =9cm kẻBD sao cho gốc ABD = gốc ACB (D thuộc AC)
a) chứng minh tam giác ABD đồng dạn với tam giác ACB
b)tính độ dài các đoạn thẳng AD và CD
cho tam giác abc có góc a bằng 90 độ trên cạnh bc lấy điểm e sao cho be=ba tia phân giác của gốc B cắt AC tại D tính số đo của gốc ADB,cho biết ABC=60 độ giúp em nhanh ạ còn mấy phút à
BD là phân giác \(\widehat{ABC}\) (gt).
\(\Rightarrow\) \(\widehat{ABD}=\) \(\dfrac{1}{2}\)\(\widehat{ABC}\) \(=\dfrac{1}{2}.60^o=30^o.\)
Mà \(\widehat{ABD}+\widehat{ADB}=\) \(90^o\) (\(\Delta ABD\) vuông tại A).
\(\Rightarrow\) \(\widehat{ADB}=\) \(90^o-30^o=60^o.\)
\(\widehat{ABD}=\dfrac{\widehat{ABC}}{2}=30^0\)
nên \(\widehat{ADB}=90^0-30^0=60^0\)
cho tam giác ABC, góc B=46 độ, C=32 độ, tia phân giác gốc A cắt BC tại D. Tính gốc ADC
\(\widehat{A}=180^0-\widehat{B}-\widehat{C}=102^0\\ \Rightarrow\widehat{DAC}=\dfrac{1}{2}\widehat{A}=51^0\\ \Rightarrow\widehat{ADC}=180^0-\widehat{DAC}-\widehat{C}=97^0\)
Cho tam giác ABC cân tại A có góc A = 100 độ, BC=a, AC= b.Vẽ về phía ngoài tam giác ABC tam giác ABD cân tại D có góc ADB= 140 độ. Tính chu vi tam giác ABD
Cho tam giác ABC có B bằng 90 độ vẽ trung tuyến AM Trên tia đối của tia MA lấy điểm I sao cho MI = MA a) chứng minh tam giác AMB= tam giác ICM b) cho góc BAC= 60 độ . Tính số đo gốc ACI
Dựng tam giác ABC có BC=3cm, AC=2cm và gốc A – gốc B bằng 15 độ
Giúp vs
Cho tam giác ABC cân tại A có góc A = 100 độ , BC=a, AC= b . Về phía ngoài của tam giác ABC vẽ tam giác ABD cân tại D có góc ADB = 140 độ . Tính chui vi tam giác ADB theo a và b ??
Sửa đề: Tam giác ABC cân tại A, góc A bằng 100 độ. BC=8cm, AC=10cm. Phía ngoài tam giác ABC vẽ tam giác ABD cân tại D, góc ADB bằng 140 độ. Tính chu vi tam giác ABD.
Cho tam giác ABC có tọa độ 3 đinh là A(4; 1), B(3; 2), C(1;6).Viết phương trình: f) đường thẳng đi qua A và tạo với hai trục tọa độ một tam giác cân đỉnh là gốc tọa độ
Đối xứng của A qua trục tung là A'(4; -1) và đối xứng của A qua trục hoành là A"(-4; 1).
Vậy đỉnh thứ hai của tam giác cân là I(-4; -1).
Ta có thể tính được hệ số góc của đường thẳng AI bằng công thức:
\(m=\dfrac{y_A-y_I}{x_A-x_I}=\dfrac{1-\left(-1\right)}{4-\left(-4\right)}=\dfrac{1}{4}\)
Vậy phương trình đường thẳng AI là:
\(y-y_A=m\left(x-x_A\right)\)
\(y-1=\dfrac{1}{4}\left(x-4\right)\)
\(4y-4=x-4\)
\(x-4y=0\)
Vậy phương trình đường thẳng cần tìm là \(x-4y=0\)
Đường thẳng đi qua A và tạo với hai trục tọa độ một tam giác cân đỉnh là gốc tọa độ sẽ qua điểm trung điểm của đoạn thẳng BC, ký hiệu là M.
Có:
Tọa độ x của trung điểm M = \(\dfrac{x_B+x_C}{2}=\dfrac{3+1}{2}=2\)
Tọa độ y của trung điểm M = \(\dfrac{y_B+y_C}{2}=\dfrac{2+6}{2}=4\)
Vậy tọa độ của điểm M là (2, 4).
Phương trình đường thẳng đi qua A và M là:
\(y-1=\dfrac{4-1}{2-4}.\left(x-4\right)\Rightarrow y=-1,5x+7\)y
Vậy phương trình đường thẳng cần tìm là \(y=-1,5x+7.\)
(Cái câu kia mình làm cho bài khác tính cop màn hình mà bấm gửi nhầm ở đây, bài giải này mới đúng nhé!)