Cho d1 : 2x - y - 1 = 0
Tìm m biết khoảng cách d2 ( m ; d1 ) = √5 biết M ( m - 1 ; 2m + 2 )
Cho (d1) y= 4mx - ( m + 5 ) ; (d2) y= ( 3m^2 + 1)x + m^2 - 4
a) tìm m để đồ thị (d1) đi qua M(2;3)
b. CM khi m thay đổi thì d1 luôn đi qua điểm A cố định d2 đi qua B cố định
c. khoảng cách AB = ???
d. Tìm m để d1 // d2
e. Tìm m để d1 cắt d2 . tìm giao điểm khi m=2
a/
\(\Rightarrow3=4m.2-m-5\Leftrightarrow m=\dfrac{8}{5}\)
b/
Tọa độ A là \(A\left(x_0;y_0\right)\)
\(\Rightarrow y_0=4mx_0-m-5\forall m\)
\(\Leftrightarrow\left(4x_0-1\right)m-\left(y_0+5\right)=0\forall m\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x_0-1=0\\y_0+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=\dfrac{1}{4}\\y_0=-5\end{matrix}\right.\)
=> d1 luân đi qua điểm A cố định \(A\left(\dfrac{1}{4};-5\right)\forall m\)
Tọa độ B là \(B\left(x_1;y_1\right)\)
\(\Rightarrow y_1=\left(3m^2+1\right)x_1+m^2-4\forall m\)
\(\Leftrightarrow3m^2x_1+x_1+m^2-4-y_1=0\forall m\)
\(\Leftrightarrow\left(3x_1+1\right)m^2+x_1-y_1-4=0\forall m\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x_1+1=0\\x_1-y_1-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-\dfrac{1}{3}\\y_1=-\dfrac{13}{3}\end{matrix}\right.\)
=> d2 luân đi qua điểm B cố định \(B\left(-\dfrac{1}{3};-\dfrac{13}{3}\right)\)
d/ d1//d2 khi
\(\left\{{}\begin{matrix}4m=3m^2+1\\-m-5\ne m^2-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m_1=1\\m_2=\dfrac{1}{3}\end{matrix}\right.\\m^2+m+1\ne0\end{matrix}\right.\)
Ta có \(m^2+m+1>0\forall m\)
\(\Rightarrow\left[{}\begin{matrix}m_1=1\\m_2=\dfrac{1}{3}\end{matrix}\right.\)
e/
\(\Rightarrow4mx-\left(m+5\right)=\left(3m^2+1\right)x+m^2-4\) tìm m để phương trình có nghiệm
Tìm giao
\(\Rightarrow4mx-\left(m+5\right)=\left(3m^2+1\right)x+m^2-4\) khi m=2
Thay m=2 tìm x rồi thay vào d1 hoặc d2 để tìm y
Cho hai đường thẳng d1:x+y+2=0, d2:x-3y+1=0.
a) Tìm tọa độ điểm M trên d1 biết M cách d2 một khoảng = 3a: Vì M nằm trên d1 nên M(x;-x-2)
Theo đề, ta có: \(\dfrac{\left|x\cdot1-3\cdot\left(-x-2\right)+1\right|}{\sqrt{1^2+\left(-3\right)^2}}=3\)
\(\Leftrightarrow\left|x+3x+6+1\right|=3\sqrt{10}\)
\(\Leftrightarrow\left|4x+7\right|=3\sqrt{10}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3\sqrt{10}-7}{4}\\x=\dfrac{-3\sqrt{10}-7}{4}\end{matrix}\right.\)
Bài tập Cho hàm số y=x-5 có đồ thị (d1) và hàm số y=-2x+1 có đồ thị (d2) a) vẽ (d1) và (d2) trên cùng một mặt phẳng tọa độ b) tìm tọa độ giao điểm của (d1) và (d2) bằng phép toán c) tính khoảng cách từ O đến đường thẳng (d1), khoảng cách từ O đến đường thẳng (d2)
a:
b: Phương trình hoành độ giao điểm là:
-2x+1=x-5
=>-2x-x=-5-1
=>-3x=-6
=>x=2
Thay x=2 vào y=x-5, ta được:
\(y=2-5=-3\)
Vậy: (d1) cắt (d2) tại A(2;-3)
c: (d1): y=x-5
=>x-y-5=0
Khoảng cách từ O(0;0) đến (d1) là:
\(d\left(O;\left(d1\right)\right)=\dfrac{\left|0\cdot1+0\cdot\left(-1\right)-5\right|}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{5}{\sqrt{2}}\)
(d2): y=-2x+1
=>y+2x-1=0
=>2x+y-1=0
Khoảng cách từ O đến (d2) là:
\(d\left(O;\left(d2\right)\right)=\dfrac{\left|0\cdot2+0\cdot1-1\right|}{\sqrt{2^2+1^2}}=\dfrac{1}{\sqrt{5}}\)
Cho 3 đường thẳng (d1) x=1-2t y=1+t, (d2): 3x+4y-4=0, (d3): 4x-3y+2=0 . Tìm điểm M nằm trên (d1) cách đều (d2) và d3
M thuộc (d1) nên M(1-2t;1+t)
Theo đề, ta có: d(M;d2)=d(M;d3)
=>\(\dfrac{\left|\left(1-2t\right)\cdot3+\left(1+t\right)\cdot4-4\right|}{\sqrt{3^2+4^2}}=\dfrac{\left|\left(1-2t\right)\cdot4+\left(1+t\right)\cdot\left(-3\right)+2\right|}{\sqrt{4^2+\left(-3\right)^2}}\)
=>|-6t+3+4t+4-4|=|4-8t-3t-3+2|
=>|-2t+3|=|-11t+3|
=>-2t+3=-11t+3 hoặc -2t+3=11t-3
=>t=0 hoặc t=6/13
=>M(1;1); M(1/13; 19/13)
Cho 2 đường thẳng: (d1) mx - y = 1 ; (d2) 2x + y = 3
a. tìm m để (d1) cắt (d2)
b. tìm m để (d1) cắt (d2) tại A(x;y) sao cho x > 0; y > 0
(d1) : y = 2x - 1
(d2) : y = x + 2
a) Vẽ (d1) và (d2).
b) Tìm tọa độ giao điểm của (d1) và (d2).
c) Tìm m để (d3) : y = 2x - m đồng quy với (d1) và (d2).
cho 2 đường thẳng d1: mx+(m-1)y-2m+1=0 và d2: (1-m)x + my -4m+1=0.
a/tim m để khoảng cách từ P(0;4) tới d1 lớn nhất.
b/ c/m d1;d2 luôn cắt tại 1 điểm cố định là I. khi m thay đổi thì I chay trên đường nào.
c/ tim GTLN của diện tích tam giác IAB với A;B là các điểm cố định mà d1;d2 đi qua.
Cho điểm A(-2; 1) và hai đường thẳng d1: 3x - 4y + 5 = 0 và d2: mx + 3y - 3 = 0. Giá trị của m để khoảng cách từ A đến d1 gấp hai lần khoảng cách từ A đến đường thẳng d2 là:
A. m = ± 1
B. m = ± 15 3
C. m = ± 4
D. m = ± 15 5
Cho d1 y=x+2 và d2 y=2mx-m^2+4.
a) Tìm m để d1//d2
b) Tính khoảng cách giữa 2 đường thẳng đó.
Em cảm ơn ạ.
a) Để (d1)//(d2) thì
\(\left\{{}\begin{matrix}2m=1\\-m^2+4\ne2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{1}{2}\\-m^2\ne-2\end{matrix}\right.\Leftrightarrow m=\dfrac{1}{2}\)
b) Chắc là tìm khoảng cách giữa hai đường thẳng khi chúng song song
Tại \(m=\dfrac{1}{2}\Rightarrow y=x+\dfrac{15}{4}\)
Chọn \(A\left(0;2\right)\in\left(d_1\right)\)
Khi đó khoảng cách giữa hai đường thẳng là khoảng cách từ điểm A đến đường thẳng \(\left(d_2\right)\)
Gọi đường thẳng \(\Delta\) vuông góc với \(\left(d_2\right)\) và đi qua A có dạng: \(\Delta:y=-x+c\)
\(A\in\Delta\Rightarrow2=c\)
\(\Rightarrow\Delta:y=-x+2\)
Gọi giao điểm của \(\Delta\) và \(d_2\) là H
Tọa độ giao điểm của H là nghiệm của hệ:\(\left\{{}\begin{matrix}y=x+\dfrac{15}{4}\\y=-x+2\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{7}{8}\\y=\dfrac{23}{8}\end{matrix}\right.\)\(\Rightarrow H\left(-\dfrac{7}{8};\dfrac{23}{8}\right)\)
Khoảng cách giữa hai đường thẳng bằng độ dài đoạn AH
\(AH=\sqrt{\left(-\dfrac{7}{8}-0\right)^2+\left(\dfrac{23}{8}-2\right)^2}=\dfrac{7\sqrt{2}}{8}\)
Vậy...