1. Cho pt: x2 + mx - 25 = 0 và có x1 = 7. Tìm x2 mà m
2. Tìm a,b khi
a) a + b = 4 ; a.b = 19
b) a2 + b2 = 85 ; a.b = 18
(1) \(x^2-2mx+2m-4=0\)
tìm m để pt có 2 nghiệm phân biệt x1 và x2 mà
a) x1 và x2 trái dấu
b) x1 và x2 cùng dương
c) x1 và x2 cùng âm
(2) \(x^2-2mx+m^2-4=0\)
tìm m để pt có 2 nghiệm x1 và x2 mà
a) x2=2x1 , b) 3x1+2x2=7
(3) \(x^2-mx+m-6=0\)
tìm m để pt có 2 nghiệm x1 và x2 mà
a)\(|x1-x2|=\sqrt{20}\)
b) \(|x1|+|x2|=6\)
1) a) Phương trình có x1 và x2 trái dấu
\(\Leftrightarrow2m-4< 0\Leftrightarrow2m< 4\Leftrightarrow m< 2\)
b) Phương trình có x1 và x2 cùng dương
\(\Leftrightarrow\hept{\begin{cases}m^2-2m+4=0\\2m>0\\2m-4>0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(m-1\right)^2+3>0\left(BĐTđúng\right)\\m>0\\m>2\end{cases}\Leftrightarrow}m>2}\)
c) Phương trình có x1 và x2 cùng âm
\(\Leftrightarrow\hept{\begin{cases}m^2-2m+4>0\\2m< 0\\2m-4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(m-1\right)^2+3>0\\m< 0\\m>2\end{cases}\Leftrightarrow0>m>2}\)
P/s: không chắc -.-
châu =)) copy câu a) rồi cho 4 tiếng con chừa làm dc câu (2) kém quá
(2) \(\left(x-m\right)^2=4\)
\(\Leftrightarrow x=\hept{\begin{cases}x1=2+m\\x2=m-2\end{cases}}\)
A) \(x_2=2x_1\Leftrightarrow\left(2+m\right)=2\left(m-2\right)\Leftrightarrow m=6\)
B) \(3x_1+2x_2=7\Leftrightarrow x_1+2\left(x_1+x_2\right)=7\)
\(x_1+x_2=2m\) \(\Leftrightarrow x_1+4m=7\Leftrightarrow5m=5\Leftrightarrow m=1\)
(3) 20 phút sau làm
Bài 1: Cho pt ẩn x:
x2 - 2(m + 1)x + m2 + 7 = 0 (1)
a) Giải pt (1) khi m = -1; m = 3.
b) Tìm m để pt (1) có nghiệm là 4. Tìm nghiệm còn lại.
c) Tìm m để pt (1) có 2 nghiệm x1, x2 thỏa:
* x12 + x22 = 0
* x1 - x2 = 0
Bài 2: Cho pt ẩn x:
x2 - 2x - m2 - 4 = 0 (1)
a) Giải pt (1) khi m = -2.
b) Tìm m để pt (1) có 2 nghiệm x1, x2 thỏa mãn:
* x12 + x22 = 20
* x13 + x23 = 56
* x1 - x2 = 10
Bài 1:
a, Thay m=-1 vào (1) ta có:
\(x^2-2\left(-1+1\right)x+\left(-1\right)^2+7=0\\
\Leftrightarrow x^2+1+7=0\\
\Leftrightarrow x^2+8=0\left(vô.lí\right)\)
Thay m=3 vào (1) ta có:
\(x^2-2\left(3+1\right)x+3^2+7=0\\ \Leftrightarrow x^2-2.4x+9+7=0\\ \Leftrightarrow x^2-8x+16=0\\ \Leftrightarrow\left(x-4\right)^2=0\\ \Leftrightarrow x-4=0\\ \Leftrightarrow x=4\)
b, Thay x=4 vào (1) ta có:
\(4^2-2\left(m+1\right).4+m^2+7=0\\ \Leftrightarrow16-8\left(m+1\right)+m^2+7=0\\ \Leftrightarrow m^2+23-8m-8=0\\ \Leftrightarrow m^2-8m+15=0\\ \Leftrightarrow\left(m^2-3m\right)-\left(5m-15\right)=0\\ \Leftrightarrow m\left(m-3\right)-5\left(m-3\right)=0\\ \Leftrightarrow\left(m-3\right)\left(m-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=3\\m=5\end{matrix}\right.\)
c, \(\Delta'=\left[-\left(m+1\right)\right]^2-\left(m^2+7\right)=m^2+2m+1-m^2-7=2m-6\)
Để pt có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow2m-6\ge0\Leftrightarrow m\ge3\)
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=m^2+7\end{matrix}\right.\)
\(x_1^2+x_2^2=0\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=0\\ \Leftrightarrow\left(2m+2\right)^2-2\left(m^2+7\right)=0\\ \Leftrightarrow4m^2+8m+4-2m^2-14=0\\ \Leftrightarrow2m^2+8m-10=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\left(ktm\right)\\m=-5\left(ktm\right)\end{matrix}\right.\)
\(x_1-x_2=0\\ \Leftrightarrow\left(x_1-x_2\right)^2=0\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=0\\ \Leftrightarrow\left(2m+2\right)^2-4\left(m^2+7\right)=0\\ \Leftrightarrow4m^2+8m+4-4m^2-28=0\\ \Leftrightarrow8m=28=0\\ \Leftrightarrow m=\dfrac{7}{2}\left(tm\right)\)
Bài 2:
a,Thay m=-2 vào (1) ta có:
\(x^2-2x-\left(-2\right)^2-4=0\\ \Leftrightarrow x^2-2x-4-4=0\\ \Leftrightarrow x^2-2x-8=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
b, \(\Delta'=\left(-m\right)^2-\left(-m^2-4\right)\ge0=m^2+m^2+4=2m^2+4>0\)
Suy ra pt luôn có 2 nghiệm phân biệt
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-m^2-4\end{matrix}\right.\)
\(x_1^2+x_2^2=20\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=20\\ \Leftrightarrow2^2-2\left(-m^2-4\right)=20\\ \Leftrightarrow4+2m^2+8-20=0\\ \Leftrightarrow2m^2-8=0\\ \Leftrightarrow m=\pm2\)
\(x_1^3+x_2^3=56\\ \Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=56\\ \Leftrightarrow2^3-3\left(-m^2-4\right).2=56\\ \Leftrightarrow8-6\left(-m^2-4\right)-56\\ =0\\ \Leftrightarrow8+6m^2+24-56=0\\ \Leftrightarrow6m^2-24=0\\ \Leftrightarrow m=\pm2\)
\(x_1-x_2=10\\ \Leftrightarrow\left(x_1-x_2\right)^2=100\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2-100=0\\ \Leftrightarrow2^2-4\left(-m^2-4\right)-100=0\\ \Leftrightarrow4+4m^2+16-100=0\\ \Leftrightarrow4m^2-80=0\\ \Leftrightarrow m=\pm2\sqrt{5}\)
Cho pt: x^3 - mx^2 -x +m=0
Tìm m để: a) pt có 3 nghiệm phân biệt x1, x2, x3 thỏa mãn x1^2 + x2^2 + x3^2 <= 2 (bé hơn hoặc bằng)
b) pt có 2 nghiệm phân biệt
c) pt có 3 nghiệm x1, x2, x3 sao cho 1/ x1 + 1/x2 + 1/x3 =4
1:cho phương trình : x2 -2mx+m2-m-3=0
a, tìm m để phương trình có 2 nghiệm trái dấu
b, tìm m để phương trình có 2 nghiệm phân biệt dương
câu 2: cho pt: x2+(2m-1)x-m=0
a, chứng tỏ rằng pt luôn có 2 nghiệm với mọi m
b, Tìm m để pt có 2 nghiệm x1,x2 TM x1-x2=1
1.Ta có \(\Delta=4m^2-4\left(m^2-m-3\right)=4m+12\)
Để phương trình có 2 nghiệm phân biệt \(\Rightarrow\Delta>0\Rightarrow4m+12>0\Rightarrow m>-3\)
Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=m^2-m-3\end{cases}}\)
a. Phương trình có 2 nghiệm trái dấu \(\Rightarrow x_1.x_2< 0\Rightarrow m^2-m-3< 0\Rightarrow\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)
Vậy \(\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)
b. Phương trình có 2 nghiệm phân biệt dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2=2m>0\\x_1.x_2=m^2-m-3>0\end{cases}\Leftrightarrow\hept{\begin{cases}m>0\\m< \frac{1-\sqrt{13}}{2}\end{cases}\left(l\right);\hept{\begin{cases}m>0\\m>\frac{1+\sqrt{13}}{2}\end{cases}\Leftrightarrow m>\frac{1+\sqrt{13}}{2}}}}\)
Vậy \(m>\frac{1+\sqrt{13}}{2}\)
2. a.Ta có \(\Delta=\left(2m-1\right)^2+4m=4m^2-4m+1+4m=4m^2+1\)
Ta thấy \(\Delta=4m^2+1>0\forall m\)
Vậy phương trình luôn có 2 nghiejm phân biệt với mọi m
b. Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=1-2m\\x_1.x_2=-m\end{cases}}\)
Để \(x_1-x_2=1\Leftrightarrow\left(x_1-x_2\right)^2=1\Leftrightarrow\left(x_1+x2\right)^2-4x_1x_2=1\)
\(\Leftrightarrow\left(1-2m\right)^2-4.\left(-m\right)=1\Leftrightarrow4m^2-4m+1+4m=1\)
\(\Leftrightarrow m^2=0\Leftrightarrow m=0\)
Vậy \(m=0\)thoă mãn yêu cầu bài toán
Cho pt x2 -(m-2)x-m2 +3m-4=0 (*)
a, Giải (*) khi m =0
b) CM pt có hai nghiệm trái dấu vs mọi m
c, Tìm m để pt (*) có nghiệm x1 x2 thoả mãn (x1+2x2)(x2+2x1)
chủ yếu là hỏi câu c hả? tớ làm mỗi đoạn đưa về tổng - tích thôi, bạn giải thấy khó chỗ nào thì hỏi cụ thể nhe ^^
\(\left(x_1+2x_2\right)\left(x_2+2x_1\right)=x_1x_2+2x_2^2+2x_1^2+4x_1x_2=2\left(x_1+x_2\right)^2-4x_1x_2+5x_1x_2\)
đến đây Vi-ét đc òi
Gotcha Tokoyami
Có \(\Delta=\left(m-2\right)^2-4\left(-m^2+3m-4\right)\)
\(=m^2-4m+4+4m^2-12m+16\)
\(=5m^2-16m+20\)
\(=5\left(m^2-\frac{16}{5}m+4\right)\)
\(=5\left[\left(m^2-2.\frac{8}{5}m+\frac{64}{25}\right)+\frac{36}{25}\right]\)
\(=5\left[\left(m-\frac{8}{5}\right)^2+\frac{36}{25}\right]>0\forall m\)
Nên pt có 2 nghiệm phân biệt với mọi m
a, Với m = 0 thì pt trở thành
\(x^2+2x-4=0\)
Có \(\Delta'=1+4=5>0\)
\(\Rightarrow\orbr{\begin{cases}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{cases}}\)
b, Theo hệ thức Vi-et \(x_1x_2=-m^2+3m-4=-\left(m-\frac{3}{2}\right)^2-\frac{7}{4}< 0\)
nên pt có 2 nghiệm trái dấu
c, Thiếu đề , nhưng làm hộ 1 bước biến đổi như bạn dưới
Cho pt x2 - 2( m + 1)x + m2 - 4m +5 =0
a) Tìm m để pt có nghiệm x1 = 5; rồi tìm x2
Thay x=5 vào pt, ta được:
25-10(m+1)+m^2-4m+5=0
=>m^2-4m+30-10m-10=0
=>m^2-14m+20=0
=>\(m=7\pm\sqrt{29}\)
x1+x2=(2m+2)
=>x2+5=16+2 căn 29 hoặc x2+5=16-2 căn 29
=>x2=11+2căn 29 hoặc x2=11-2 căn 29
Cho phương trình : x2 - 2m( m + 2 )x + m2 +7 = 0
tìm m để pt có 2 nghiệm thỏa mãn x1.x2 - 2(x1 + x2) = 4
Lời giải:
Để pt có 2 nghiệm thì:
$\Delta'=(m^2+2m)^2-(m^2+7)\geq 0$
$\Leftrightarrow m^4+4m^3+3m^2-7\geq 0(*)$
Áp dụng định lý Viet:
$x_1+x_2=2m(m+2)$
$x_1x_2=m^2+7$
Khi đó:
$x_1x_2-2(x_1+x_2)=4$
$\Leftrightarrow m^2+7-4m(m+2)=4$
$\Leftrightarrow -3m^2-8m+3=0$
$\Leftrightarrow (1-3m)(m+3)=0$
$\Leftrightarrow m=\frac{1}{3}$ hoặc $m=-3$
Thử lại với $(*)$ thấy đều không thỏa mãn
Vậy không tồn tại $m$ thỏa mãn đkđb
Bài 1 cho pt x^2-2(m+1)x+4m+m^2=0 .Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 sao cho biểu thức A =|x1-x2| đạt giá trị nhỏ nhất
bài 2 cho pt x^2+mx+2m-4=0.Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+|x2|=3
bài 3 cho pt x^2-3x-m^2+1=0.tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+2|x2|=3
Cho pt x^2 -mx +m-2
a)CMR pt luôn có 2 nghiệm phân biệt
b)Tìm m để pt có 2 nghiệm x1,x2 thỏa mãn x1^-2/x1-1 . x2^2-2/x2-1=4