Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dragon Boy
Xem chi tiết
Thu Hường Nguyễn
Xem chi tiết
Nguyễn Nhã Thanh
Xem chi tiết
Trình
2 tháng 8 2017 lúc 22:36

Điều kiện : a> 0 ; a khác 1

\(A=\frac{\left(\sqrt{a}\right)^3-1}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}\right)^3+1}{\sqrt{a}\left(\sqrt{a}+1\right)}+\left(\frac{a-1}{\sqrt{a}}\right)\left(\frac{\left(\sqrt{a}+1\right)^2+\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

\(A=\frac{a+\sqrt{a}+1}{\sqrt{a}}-\frac{a-\sqrt{a}+1}{\sqrt{a}}+\left(\frac{a-1}{\sqrt{a}}\right)\left(\frac{2a+2}{a-1}\right)\)

\(A=\frac{2\sqrt{a}}{\sqrt{a}}+\frac{2\left(a+1\right)}{\sqrt{a}}=2+\frac{2\sqrt{a}\left(a+1\right)}{a}\)

wary reus
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 2 2022 lúc 0:26

a: \(A=\dfrac{a+\sqrt{a}+1-a+\sqrt{a}-1}{\sqrt{a}}+\dfrac{a-1}{\sqrt{a}}\cdot\dfrac{a+2\sqrt{a}+1+a-2\sqrt{a}+1}{a-1}\)

\(=2+\dfrac{2a+2}{\sqrt{a}}=\dfrac{2a+2\sqrt{a}+2}{\sqrt{a}}\)

b: Để A=7 thì \(2a-5\sqrt{a}+2=0\)

\(\Leftrightarrow\left(\sqrt{a}-2\right)\left(2\sqrt{a}-1\right)=0\)

=>a=4 hoặc a=1/4

Nguyễn Nhã Thanh
Xem chi tiết
Minecraftboy01
Xem chi tiết
Minecraftboy01
6 tháng 7 2019 lúc 21:53

Bổ sung thêm:

b. Tìm a để A<0

Yuzu
6 tháng 7 2019 lúc 22:04

a. ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

\(A=\left(\frac{\left(\sqrt{a}\right)^2-1}{2\sqrt{a}}\right)^2\cdot\left(\frac{\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\\ =\left(\frac{a-1}{2\sqrt{a}}\right)^2\cdot\left(\frac{a-2\sqrt{a}+1-a-2\sqrt{a}-1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\\ =\frac{\left(a-1\right)^2}{4a}\cdot\frac{-4\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\\ =-\frac{a-1}{\sqrt{a}}=\frac{1-a}{\sqrt{a}}\)

b. Để A < 0 thì 1 - a <0 ( vì mẫu \(\sqrt{a}\ge0\forall a\) ) <=> -a < -1 <=> a > 1

Nguyễn Ngọc Anh
Xem chi tiết
Ngô Chi Lan
22 tháng 8 2020 lúc 16:58

a) đkxđ: \(a>0;a\ne1\)

Ta có:

\(P=\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}+\left(1-\frac{1}{\sqrt{a}}\right)\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}+\frac{\sqrt{a}-1}{\sqrt{a}+1}\right)\)

\(P=\frac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}+\frac{\sqrt{a}-1}{\sqrt{a}}.\frac{a+2\sqrt{a}+1+a-2\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(P=\frac{a+\sqrt{a}+1}{\sqrt{a}}-\frac{a-\sqrt{a}+1}{\sqrt{a}}+\frac{2a+2}{\left(\sqrt{a}+1\right)\sqrt{a}}\)

\(P=\frac{2\sqrt{a}\left(\sqrt{a}+1\right)+2a+2}{\left(\sqrt{a}+1\right)\sqrt{a}}\)

\(P=\frac{2a+2\sqrt{a}+2a+2}{\left(\sqrt{a}+1\right)\sqrt{a}}\)

\(P=\frac{4a+2\sqrt{a}+2}{\left(\sqrt{a}+1\right)\sqrt{a}}\)

Khách vãng lai đã xóa
Ngô Chi Lan
22 tháng 8 2020 lúc 17:01

b) \(P=7\)

\(\Leftrightarrow\frac{4a+2\sqrt{a}+2}{\left(\sqrt{a}+1\right)\sqrt{a}}=7\)

\(\Leftrightarrow4a+2\sqrt{a}+2=7a+7\sqrt{a}\)

\(\Leftrightarrow3a+5\sqrt{a}-2=0\)

\(\Leftrightarrow\left(3a-\sqrt{a}\right)+\left(6\sqrt{a}-2\right)=0\)

\(\Leftrightarrow\left(3\sqrt{a}-1\right)\sqrt{a}+2\left(3\sqrt{a}-1\right)=0\)

\(\Leftrightarrow\left(3\sqrt{a}-1\right)\left(\sqrt{a}+2\right)=0\)

Mà \(\sqrt{a}+2\ge2\left(\forall a\right)\)

\(\Rightarrow3\sqrt{a}-1=0\Leftrightarrow3\sqrt{a}=1\)

\(\Leftrightarrow\sqrt{a}=\frac{1}{3}\Rightarrow a=\frac{1}{9}\)

Khách vãng lai đã xóa
Thân Thùy Dương
Xem chi tiết
Hà Phương
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 7 2020 lúc 22:20

ĐKXĐ: ...

\(P=\left(\frac{\sqrt{a}-1}{a+\sqrt{a}+1}-\frac{1-3\sqrt{a}+a}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}-\frac{1}{\sqrt{a}-1}\right):\frac{a+1}{1-\sqrt{a}}\)

\(=\left(\frac{\left(\sqrt{a}-1\right)^2-1+3\sqrt{a}-a-\left(a+\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\right)\left(\frac{1-\sqrt{a}}{a+1}\right)\)

\(=\frac{-\left(a+1\right)}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}.\frac{-\left(\sqrt{a}-1\right)}{\left(a+1\right)}=\frac{1}{a+\sqrt{a}+1}\)

Lê Lan Hương
Xem chi tiết