Cho x,y,z thuộc Z và P=(x+2012)5+(2y-2013)5+(3z+2014)5; S=x+2y+3z+2013
CMR: P chia hết cho 3 tương đương S chia hết cho 3
Cho x,y,z là số nguyên và:
\(\hept{\begin{cases}P=\left(x+2012\right)^5+\left(2y-2013\right)^5+\left(3z+2014\right)^5\\S=x+2y+3z+2013\end{cases}}\)
CMR:\(P⋮30\)khi và chỉ khi \(S⋮30\)
Cho x;y;z là các số nguyên và\(\hept{\begin{cases}P=\left(x+2012\right)^5+\left(2y-2013\right)^5+\left(3z+2014\right)^5\\S=x+2y+3z+2013\end{cases}}\) Chứng minh rằng P chia hết cho 30 khi và chỉ khi S chia hết cho 30.
Tìn x,y thuộc Z thỏa mãn
\(\hept{\begin{cases}P=\left(x+2012\right)^5\\S=x+2y+3z+2013\end{cases}}+\left(2y-2013\right)^5+\left(3z+2014\right)^5\)
\(CMR\)\(P\)\(chia\)\(hết\)\(cho\)\(30\Leftrightarrow S\)\(chia\)\(hết\)\(cho\)\(30\)
\(S=\left(x+2012\right)+\left(2y-2013\right)+\left(3z+2014\right)=a+b+c\)
\(P=a^5+b^5+c^5\)
\(P-S=\left(a^5-a\right)+\left(b^5-b\right)+\left(c^5-c\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)+b\left(b-1\right)\left(b+1\right)\left(b^2+1\right)+c\left(c-1\right)\left(c+1\right)\left(c^2+1\right)\)
Ta chứng minh \(a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\) chia hết cho 30 .
tương tự => \(b\left(b-1\right)\left(b+1\right)\left(b^2+1\right);c\left(c-1\right)\left(c+1\right)\left(c^2+1\right)\)chia hết cho 30.
=> P -S chia hết cho 30 => (dpcm)
Câu 1: Tìm x, y, z biết:
(3x-5)^2010+(y-1)^2012+(x-z)^2014=0
Câu 2: tìm x, y thuộc N biết:
116-y^2=7(x-2013)^2
Giúp mình tí
a,tim x,y,z thoa man x/10=y/15 ,x=z/2 va x+2y -3z = -24
b,cho đa thức f(x) thoả mãn điều kiện
(x- 2013).f(x) = ( x- 2014) . f(x- 2012)
Chứng minh rằng f(x) có ít nhất 2 nghiệm
a)
\(\frac{x}{10}=\frac{y}{15}=>\frac{x}{2}=\frac{y}{3}\)
\(x=\frac{z}{2}=>\frac{x}{2}=\frac{z}{4}\)
=> x/2=y/3=z/4=\(\frac{x+2y-3z}{2+4-12}=\frac{-24}{-6}=4\)
x=4x2=8
y=4x3=12
z=4x4=16
Tìm x, y, z thỏa mãn:
a) x(x+y+z)= -5, y(x+y+z)=9, z( x+y+z) =5
b) x( x+2y+3z)= -5, y(x+2y+3z)=27, z(x+2y+3z)=5
TÌM X , Y, Z BIẾT
\(\frac{x-2013}{2}=\frac{y-2014}{6}=\frac{z-2015}{8}\)và x+2y-3z=1
\(\frac{x-2013}{2}=\frac{y-2014}{6}=\frac{z-2015}{8}\)
\(\Rightarrow\frac{x-2013}{2}=\frac{2y-4028}{12}=\frac{3z-6045}{24}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :
\(\frac{x-2013}{2}=\frac{2y-4028}{12}=\frac{3z-6045}{24}=\frac{\left(x-2013\right)+\left(2y-4028\right)-\left(3z-6045\right)}{2+12-24}=\frac{5}{-10}=\frac{-1}{2}\)
Từ đó suy ra :
\(\frac{x-2013}{2}=\frac{-1}{2}\Rightarrow x-2013=-1\Rightarrow x=2012\)
\(\frac{2y-4028}{12}=\frac{-1}{2}\Rightarrow2y-4028=-6\Rightarrow2y=4022\Rightarrow y=2011\)
\(\frac{3z-6045}{24}=\frac{-1}{2}\Rightarrow3z-6045=-12\Rightarrow3z=6033\Rightarrow z=2011\)
Tìm x,y,z thỏa x(x+2y+3z)=-5; y(x+2y+3z)=27 ; z(x+2y+3z)=5
Ta có: \(\left\{{}\begin{matrix}x\left(x+2y+3z\right)=-5\\y\left(x+2y+3z\right)=27\\z\left(x+2y+3z\right)=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{-5}=x+2y+3z\\\dfrac{y}{27}=x+2y+3z\\\dfrac{z}{5}=x+2y+3z\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{-5}=\dfrac{y}{27}=\dfrac{z}{5}\Rightarrow\left\{{}\begin{matrix}y=\dfrac{-27}{5}x\\z=-x\end{matrix}\right.\)
Ta có: \(x\left(x+2y+3z\right)=-5\Rightarrow x\left(x+2.\dfrac{-27}{5}x-3x\right)=-5\)
\(\Rightarrow\dfrac{-64}{5}x^2=-5\Rightarrow x^2=\dfrac{25}{64}\Rightarrow x=\dfrac{5}{8}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{8}\\y=-\dfrac{27}{5}x=-\dfrac{27}{8}\\z=-x=-\dfrac{5}{8}\end{matrix}\right.\)
bài 10 a)x/2=y/3 và 4x-3y=-2
b)2x=5y và x+y=-42
bài 11 a)x/3=y/4=z/6 và x+2y-3z=-14
b)x/5=y/6;y/8=z/7 và x=y-z=138
c)x=y/3=z/5 và 15x-5y=3z=45
dx/2=y/3;y/2=z/3 vâ x-2y+3z=19
Bài `10`
`a,` Ta có : `x/2=y/3=>(4x)/8 =(3y)/9`
ADTC dãy tỉ số bằng nhau ta có :
`(4x)/8 =(3y)/9=(4x-3y)/(8-9)=(-2)/(-1)=2`
`=> x/2=2=>x=2.2=4`
`=>y/3=2=>y=2.3=6`
`b,` Ta có : `2x=5y=>x/5=y/2`
ADTC dãy tỉ số bằng nhau ta có :
`x/5=y/2=(x+y)/(5+2)=-42/7=-6`
`=>x/5=-6=>x=-6.5=-30`
`=>y/2=-6=>y=-6.2=-12`
Bài `11`
`a,` Ta có : `x/3=y/4=z/6=>x/3=(2y)/8 =(3z)/18`
ADTC dãy tỉ số bằng nhau ta có :
`x/3=(2y)/8=(3z)/18=(x+2y-3z)/(3+8-18)=(-14)/(-7)=2`
`=>x/3=2=>x=2.3=6`
`=>y/4=2=>y=2.4=8`
`=>z/6=2=>z=2.6=12`
Bạn đăng lại `2` câu sau nhe , mình ko hiểu `x=y-z` với `15x-5y=3x=45`
`d,` Ta có :
`x/2=y/3=>x/4=y/6`
`y/2=z/3=>y/6=z/9`
`-> x/4=y/6=z/9=>x/4=(2y)/12 =(3z)/27`
ADTC dãy tỉ số bằng nhau ta có :
`x/4=(2y)/12=(3z)/27=(x-2y+3z)/(4-12+27)=19/19=1`
`=>x/4=1=>x=1.4=4`
`=>y/6=1=>y=1.6=6`
`=>z/9=1=>z=1.9=9`