cho P (x) = 2x^3 - 2x - 5 ; Q(x) = -x^3 + x^2 +1 - x
tính
a P(x) +Q(x)
b P(x) =Q(x)
Cho P=x^2+2x/2x+10+x-5/x-6x+5(2x+3(2x-3
a Rút gọn P
b tìm x để p=1 p=-3
Tìm Min của:
A= |2x-1|+|2x-3|
B=|2x+1|+|2x-3|+5
C=|x+2|+|x-3|+|x+5|
D=|x+1|+|x-2|+|x-7|
nhanh, đúng,mik tik cho
\(\left|2x-1\right|+\left|2x-3\right|=\left|2x-1\right|+\left|3-2x\right|\)
\(\Rightarrow A=\left|2x-1\right|+\left|3-2x\right|\ge\left|2x-1+3-2x\right|\)
\(\Rightarrow A=\left|2x-1\right|+\left|3-2x\right|\ge\left|2\right|=2\)
dấu "="xảy ra khi \(\left(2x-1\right).\left(3-2x\right)\ge0\)
\(\Rightarrow\frac{1}{2}\le x\le\frac{3}{2}\)
vậy min A=2 khi \(\frac{1}{2}\le x\le\frac{3}{2}\)
Tìm x, biết:
1) 2x . (x-5) -x . (2x-4) = 15
2) (x+1) . (x+2) - (x+4) . (x+3) = 6
3) 4x2 - 4x+5 - x . (4x-3) = 1-2x
4) (x+3) . (2x+1) - 2x2 = 4x-5
5) -4 . (2x-8) + (2x-1) . (4x+3) = 0
6) -3 . (x-2) + 4 . (2x-6) - 7 . (x-9)= 5 . (3-2)
7) (x-2) . (x+2) -2 . (x-4) = 10. 3x
8) 15x . (x-2) - (5x-1) . (3x + 1) = 6
9) (2x+4) . (x-3) - x . (2x-10) =15-20x
10) (4x-2) . (3x+4) - (2x-1) . (6x+5) = 100
HEPL ME !!! Cần làm gấp những bài này, ai lm dc mk tick cho ng đó nha !!! THANK YOU !!!!
Tìm x, biết:
1) 2x ( x - 5) - x ( 2x - 4 ) = 15
<=> 2x2 - 10x - 2x2 + 4x - 15 = 0
<=> -6x - 15 = 0
<=> -6x = 15
<=> x = -15/6
2) ( x +1)( x + 2 ) - ( x + 4 ) ( x + 3 ) = 6
<=> x2 + 2x + x + 2 - x2 - 3x - 4x - 12 - 6 = 0
<=> -4x = -16
<=> x = 4
3) 4x2 - 4x + 5 - x ( 4x - 3) = 1 - 2x
<=> 4x2 - 4x + 5 - 4x2 + 3x - 1 + 2x = 0
<=> x + 4 = 0
<=> x = -4
4) ( x + 3 ) ( 2x + 1 ) - 2x2 = 4x - 5
<=> 2x2 + x + 6x + 3 - 2x2 - 4x + 5 = 0
<=> 3x + 8 = 0
<=> 3x = -8
<=> x = -8/3
5) -4 ( 2x - 8 ) + ( 2x - 1 )( 4x + 3 ) = 0
<=> - 8x + 32 + 8x2 + 6x - 4x - 3 = 0
.......
6) -3 . (x-2) + 4 . (2x-6) - 7 . (x-9)= 5 . (3-2)
<=> -3x + 6 + 8x - 24 - 7x + 63 - 5 = 0
<=> -2x + 40 = 0
<=> -2x = -40
<=> x = 20
Còn lại tương tự ....
Cho x^2+x+1.
Tính giá trị biểu thức Q=x^6+2x^5+2x^4+2x^3+2x^2+2x+1
Ta có:
Q= \(x^2.\left(x^4+2x^3+x^2\right)+\left(x^4+2x^3+x^2\right)+x^2+x+x+1\)
\(=x^2.\left(x^2+x\right)^2+\left(x^2+x\right)^2+x+2\)
\(=x^2+x+3=4\)
Vậy Q=4
cho 2 da thuc:
A(x)=2x^3+2x-3x^3+1
B(x)=2x^2+3x^3-x-5
Cho biểu thức: A=\(\left[\frac{3\left(x+2\right)}{2x^3+2x+2x^2+2}+\frac{2x^2-x-10}{2x^3-2-2x^2+2x}\right]:\left[\frac{5}{x^2+1}+\frac{3}{2x+2}-\frac{3}{2x-2}\right]\)
Rút gọn A.
Bài làm
Như đã nhắn là mình sẽ làm theo quan điểm của mình là 5/(x^2 - 1) nha
\(A=\left[\frac{3\left(x+2\right)}{2x^3+2x+2x^2+2}+\frac{2x^2-x-10}{2x^3-2-2x^2+2x}\right]:\left[\frac{5}{x^2-1}+\frac{3}{2x+2}-\frac{3}{2x-2}\right]\)
\(A=\left[\frac{3\left(x+2\right)}{2x^2\left(x+1\right)+2\left(x+1\right)}+\frac{2x^2+4x-5x-10}{\left(2x^3-2x^2\right)+\left(2x-2\right)}\right]:\left[\frac{5}{x^2-1}+\frac{3}{2\left(x+1\right)}-\frac{3}{2\left(x-1\right)}\right]\)
\(A=\left[\frac{3\left(x+2\right)}{\left(2x^2+2\right)\left(x+1\right)}+\frac{2x\left(x+2\right)-5\left(x+2\right)}{2x^2\left(x-1\right)+2\left(x-1\right)}\right]:\left[\frac{5\cdot2}{2\left(x+1\right)\left(x-1\right)}+\frac{3}{2\left(x+1\right)}-\frac{3}{2\left(x-1\right)}\right]\)
\(A=\left[\frac{3\left(x+2\right)}{\left(2x^2+2\right)\left(x+1\right)}+\frac{\left(2x-5\right)\left(x+2\right)}{\left(2x^2+2\right)\left(x-1\right)}\right]:\left[\frac{5\cdot2}{2\left(x+1\right)\left(x-1\right)}+\frac{3}{2\left(x+1\right)}-\frac{3}{2\left(x-1\right)}\right]\)
\(A=\left[\frac{3\left(x+2\right)\left(x-1\right)}{\left(2x^2+2\right)\left(x^2-1\right)}+\frac{\left(2x-5\right)\left(x+2\right)\left(x+1\right)}{\left(2x^2+2\right)\left(x^2-1\right)}\right]:\left[\frac{5\cdot2}{2\left(x+1\right)\left(x-1\right)}+\frac{3\left(x-1\right)}{2\left(x^2-1\right)}-\frac{3\left(x+1\right)}{2\left(x^2-1\right)}\right]\)
\(A=\left[\frac{3\left(x+2\right)\left(x-1\right)+\left(2x-5\right)\left(x+2\right)\left(x+1\right)}{\left(2x^2+2\right)\left(x^2-1\right)}\right]:\left[\frac{10}{2\left(x^2-1\right)}+\frac{3x-3}{2\left(x^2-1\right)}-\frac{3x+3}{2\left(x^2-1\right)}\right]\)
\(A=\left[\frac{\left(x+2\right)\left[3x-3+\left(2x-5\right)\left(x+1\right)\right]}{\left(2x^2+2\right)\left(x^2-1\right)}\right]:\left[\frac{10+3x-3-3x-3}{2\left(x^2-1\right)}\right]\)
\(A=\left[\frac{\left(x+2\right)\left(3x-3+2x^2+2x-5x-5\right)}{\left(2x^2+2\right)\left(x^2-1\right)}\right]:\frac{4}{2\left(x^2-1\right)}\)
\(A=\frac{\left(x+2\right)\left(2x^2-8\right)}{\left(2x^2+2\right)\left(x^2-1\right)}\cdot\frac{\left(x^2-1\right)}{2}\)
\(A=\frac{\left(x+2\right)2\left(x^2-4\right)}{2\left(2x^2+2\right)}\)
\(A=\frac{2\left(x+2\right)\left(x-2\right)\left(x+2\right)}{4\left(x^2+1\right)}\)
\(A=\frac{\left(x+2\right)^2\left(x-2\right)}{2\left(x^2+1\right)}\)
:>>> Chả biết đúng không nữa nhưng số to quá :>>
Tìm x cho biết
a) (2x+3)^3=(2x+3)^8
b) (6-2)^9=(6-2)^31
c) | 5-3|=|11+2x|
d) (x-5)^4=(x-5)^6
a) \(\left(2x+3\right)^3=\left(2x+3\right)^8\)
TH1 \(2x+3=1\)
\(2x=1-3=-2\)
\(x=-1\)
TH2 \(2x+3=0\)
\(2x=-3\Rightarrow x=-\frac{3}{2}\)
b) ? sai đề
c) \(\left|5-3\right|=\left|11+2x\right|\Rightarrow\left|2\right|=\left|11+2x\right|\)
\(\hept{\begin{cases}11+2x=-2\\11+2x=2\end{cases}\Rightarrow}\hept{\begin{cases}2x=13\\2x=9\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{13}{2}\\x=\frac{9}{2}\end{cases}}\)
d) \(\left(x-5\right)^4=\left(x-5\right)^6\Rightarrow\hept{\begin{cases}x-5=0\\x-5=1\end{cases}}\Rightarrow\hept{\begin{cases}x=5\\x=6\end{cases}}\)
Dũng Lê Trí giúp mik bài này cái
b) (6-2x)9 = (6-2x)31
Giài nhanh giùm mik nha
cho 2 đa thức:
A(x)=2x^3+2x-3x^2+1 B(x)=2x^2+3x^3-x-5
Cho 2 đa thức p(x)=4x^3+2x-3+2x-2x^2-1 và q(x)=6x^3-3x+5-2x+3x^2.
a. Tìm bậc của p(x) và q(x)
b. Tìm đa thức m(x) sao cho m(x)=p(x)+q(x)
a, \(P\left(x\right)=4x^3+2x-3+2x-2x^2-1\\ =4x^3-2x^2+\left(2x+2x\right)+\left(-3-1\right)\\ =4x^3-2x^2+4x-4\)
Bậc của P(x) là 3
\(Q\left(x\right)=6x^3-3x+5-2x+3x^2\\ =6x^3+3x^2+\left(-3x-2x\right)+5\\ =6x^3+3x^2-5x+5\)
Bậc của Q(x) là 3
b, \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=4x^3-2x^2+4x-4+6x^3+3x^2-5x+5\\ =\left(4x^3+6x^3\right)+\left(-2x^2+3x^2\right)+\left(4x-5x\right)+\left(-4+5\right)\\ =10x^3+x^2-x+1\)
2x + 5 chia hết cho 2x - 1
2x chia het cho x-3
2x-1chia hết cho 3x
4x + 7 chia hết cho 3x-5
Ta có : 2x + 5 chia hết cho 2x - 1
=> 2x - 1 + 6 chia hết cho 2x - 1
=> 6 chia hết cho 2x - 1
=> 2x - 1 thuộc Ư(6) = {1;2;3;6}
=> 2x thuộc {2;4}
=> x = {1;2}
Vậy x = {1;2}
a)Ta có : 2x + 5 \(⋮\) cho 2x - 1
=> 2x - 1 + 6 \(⋮\)cho 2x - 1
=> 6 \(⋮\) cho 2x - 1
=> 2x - 1 \(\in\) Ư(6) = {1;2;3;6}
=> 2x \(\in\){2;4}
=> x = {1;2}
Vậy x = {1;2}
Ta có : 2x + 5 chia hết cho 2x - 1
=> 2x - 1 + 6 chia hết cho 2x - 1
=> 6 chia hết cho 2x - 1
=> 2x - 1 thuộc Ư(6) = {1;2;3;6}
=> 2x thuộc {2;4}
=> x = {1;2}
Vậy x = {1;2}