Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Ngọc Ánh
Xem chi tiết
Chi Nguyễn
Xem chi tiết
Nguyễn Phương Uyên
29 tháng 2 2020 lúc 20:46

a, tam giác ABC cân tại A (gt)

=> góc ABC = góc ACB (đl)

góc ACB = góc ECN (đối đỉnh)

=> góc ABC  = góc ECN 

xét tam giác BDM và tam giác ECN có : BD = CE (gt)

góc MDB = góc CEN = 90

=> tam giác BDM = tam giác ECN (cgv-gnk)

=> DM = EN (đn)

b, MD _|_ BC (gt)

NE _|_ BC (gT)

=> MD // EN (Đl)

=> góc DMI = góc INE (slt)

xét tam giác DMI và tam giác ENI có : góc MDI = góc NEI  = 90

MD = EN (Câu a)

=>  tam giác DMI = tam giác ENI (cgv-gnk)

=> DI = IE (đn) mà I nằm giữa D và E 

=> I là trđ của DE (đn)

c, xét tam giác ABO và tam giác ACO có : AO chung

AB = AC do tam giác ABC cân tại A (gT)

góc ABO = góc ACO = 90

=> tam giác ABO = tam giác ACO (ch-cgv)

=> BO = CO (đn) 

=> O thuộc đường trung trực của BC (đl)

AB = AC (cmt) => A thuộc đường trung trực của BC (Đl)

=> AO là trung trực của BC

Khách vãng lai đã xóa
Agatsuma Zenitsu
29 tháng 2 2020 lúc 20:56

Hình tự vẽ nha.

a, Xét \(\Delta MBD\)và \(\Delta NEC\)có:

\(CE=BD\left(gt\right)\)

\(\widehat{NEC}=\widehat{MDB}=90^0\)

\(\widehat{MBD}=\widehat{NCE}\left(=\widehat{ACD}\right)\)

\(\Rightarrow\Delta MBD=\Delta NEC\left(cgv-gnk\right)\)

\(\Rightarrow MD=EN\left(2c.t.ứ\right)\)

b, Xét \(\Delta MID\)và \(\Delta NIE\) có:

\(\widehat{MDI}=\widehat{NEI}=90^0\)

\(EN=MD\left(cmt\right)\)

\(\widehat{MID}=\widehat{NIE}\left(đ.đ\right)\)

\(\Rightarrow\Delta MID=\Delta NIE\left(cgv-gn\right)\)

\(\Rightarrow ID=IE\left(2.c.t.ứ\right)\)

\(\Rightarrow I\) là giao điểm của \(DE\)

c, Xét \(\Delta ABO\) và \(\Delta ACO\) có:

\(AB=AC\)

\(\widehat{ABO}=\widehat{ACO}=90^0\)

\(AO\) là cạnh chung

\(\Rightarrow\text{​​}\)\(\Delta ABO=\Delta ACO\left(ch-cgv\right)\)

\(\Rightarrow\widehat{BAO}=\widehat{CAO}\left(2g.t.ứ\right)\)

\(\Rightarrow AO\)là đường phân giác trong \(\Delta ABC\) cân tại \(A\)

\(\Rightarrow AO\) là đường trung trực của \(BC\)

Khách vãng lai đã xóa
Nguyễn Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 7 2021 lúc 11:40

a) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có

AD chung

\(\widehat{HAD}=\widehat{KAD}\)(AD là tia phân giác của \(\widehat{HAK}\))

Do đó: ΔAHD=ΔAKD(Cạnh huyền-góc nhọn)

Suy ra: AH=AK(hai cạnh tương ứng)

b) Ta có: \(\widehat{BDA}+\widehat{DAH}=90^0\)

\(\widehat{BAD}+\widehat{KAD}=90^0\)

mà \(\widehat{DAH}=\widehat{KAD}\)(AD là tia phân giác của \(\widehat{HAK}\))

nên \(\widehat{BDA}=\widehat{BAD}\)

Xét ΔABD có \(\widehat{BDA}=\widehat{BAD}\)(cmt)

nên ΔABD cân tại B(Định lí đảo của tam giác cân)

c) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Dream
11 tháng 7 2021 lúc 11:35


 

 

Lộc Ngô
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 5 2021 lúc 11:17

a) Xét ΔAMK vuông tại A và ΔCMH vuông tại C có 

MA=MC(M là trung điểm của AC)

\(\widehat{AMK}=\widehat{CMH}\)(hai góc đối đỉnh)

Do đó: ΔAMK=ΔCMH(cạnh góc vuông-góc nhọn kề)

Suy ra: AK=CH(hai cạnh tương ứng)

Xét tứ giác AKCH có 

AK//CH(\(\perp AC\))

AK=CH(cmt)

Do đó: AKCH là hình bình hành(Dấu hiệu nhận biết hình bình hành)

khang
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 6 2023 lúc 11:07

a: BC=căn 9^2+12^2=15cm

AD là phân giác

=>BD/AB=CD/AC

=>BD/3=CD/4=15/7

=>BD=45/7cm; CD=60/7cm

AH=9*12/15=108/15=7,2cm

b: Xét ΔHAC vuông tại H và ΔMEA vuông tại M có

góc HCA=góc MAE

=>ΔHAC đồng dạng với ΔMEA

Võ Thị Thúy 8A7
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 7 2023 lúc 23:26

a: BC=căn 9^2+12^2=15cm

AD là phân giác

=>BD/AB=CD/AC

=>BD/3=CD/4=(BD+CD)/(3+4)=15/7

=>BD=45/7cm; CD=60/7cm

AH=9*12/15=108/15=7,2cm

b: Xét ΔHAC vuông tại H và ΔMEA vuông tại M có

góc HCA=góc MAE

=>ΔHAC đồng dạng với ΔMEA

Vũ Hoàng Hải
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 7 2023 lúc 21:19

a: góc BAE+góc CAE=90 độ

góc BEA+góc HAE=90 độ

mà góc CAE=góc HAE
nên góc BAE=góc BEA

=>ΔBAE cân tại B

c: góc CAD+góc BAD=90 độ

góc CDA+góc HAD=90 độ

mà góc BAD=góc HAD

nên góc CAD=góc CDA

=>ΔCAD cân tại C

anh ha
Xem chi tiết
Shinichi Kudo
17 tháng 3 2022 lúc 8:52

A B C H E M

a)Xét \(\Delta AHB\) vuông tại H và \(\Delta AHC\) vuông tại H có :

\(AB=AC\)

\(\widehat{ABC}=\widehat{ACB}\)

=> \(\Delta AHB\)​=\(\Delta AHC\) (ch-gn)

b) Xét \(\Delta AMH\) và \(\Delta CME\) có :

\(AM=MC\)

\(\widehat{AMH}=\widehat{CME}\)

\(ME=MH\)

=> \(\Delta AMH\)​=\(\Delta CME\) (c-g-c)

=> AH=CE

c)Có : \(\widehat{HAM}=\widehat{MCE}\) 

mà \(\widehat{HAM}và\widehat{MCE}\) ở vị trí so le

=> AH//CE

=> \(\widehat{AHB}=\widehat{HCE}=90^o\)

Xét  \(\Delta AHC\) và \(\Delta ECH\) có :

CH chung 

\(\widehat{AHB}=\widehat{HCE}=90^o\)

AH=CE

=> \(\Delta AHC\)=\(\Delta ECH\) (c-g-c)

=>\(\widehat{HCA}=\widehat{EHC}\)

mà \(\widehat{HCA}=\widehat{HBA}\)

=> \(\widehat{HBA}=\widehat{EHC}\)

Mà ​​\(\widehat{HBA}và\widehat{EHC}\) ở vị trí đồng vị​

=> HM//AB

Shinichi Kudo
17 tháng 3 2022 lúc 9:02

GT ABC ; AB=AC AH BC MA=MC HM=EM KL a) AHB AHC = b) AH=CE c) HM//AB

Yoona SNSD
Xem chi tiết