Cho tam giác ABC có đường cao BE và CF cắt nhau tại H. I là trung điểm của AH; K là trung điểm của BC.
a, CMR: tam giác IAF và tam giác KFB là tam giác đều
b, FK vuông góc với FI
c,Cho AH= 6cm, BC=8cm. Tính IK?
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho tam giác nhọn ABC có các đường cao AD,BE,CF cắt nhau tại H,gọi O là trung điểm của BC,I là trung điểm của AH,K là giao điểm của EF,OI.Chứng minh tam giác IEO và tam giác IFO vuông
Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD,BE,CF cắt nhau tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh: a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD b) AE.AC=AF.AB và tam giác AEF đồng dạng tam giác ABC c) tam giác HFB đồng dạng với tam giác HEC và HE.HB=HF.HC d) EH là tia phân giác của góc DEF e) BF.BA + CE.CA=BC2 f) HD/AD + HE/BE + HF/CF = 1 g) góc IEG = 90
Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD,BE,CF cắt nhau tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh: a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD b) AE.AC=AF.AB và tam giác AEF đồng dạng tam giác ABC c) tam giác HFB đồng dạng với tam giác HEC và HE.HB=HF.HC d) EH là tia phân giác của góc DEF e) BF.BA + CE.CA=BC2 f) HD/AD + HE/BE + HF/CF = 1 g) góc IEj = 90
Cho tam giác ABC có các đường cao BE, CF cắt nhau tại H. Gọi I là trung điểm của đoạn AH và K là trung điểm của cạnh BC. Chứng minh rằng FK vuông góc với FI
Cho tam giác ABC có các đường cao BE,CF cắt nhau tại H. Gọi I là trung điểm của cạnh BC.Biết AH=6cm,BC=8cm.Khi đó độ dài IK là :
Cho tam giác ABC nhọn nội tiếp đường tròn ( O ), Đường cao AD, BE,CF cắt nhau tại H .AH ,BH, CH kéo dài cắt đường tròn tâm O lần lượt tại Q,P,R. M là trung điểm của BC, I là trung điểm của AH , EF cắt AH tại K . Chứng minh :
a, Chứng minhTứ giác BFHD , CEHD , BFEC nội tiếp
b, Kẻ đường kinh AN , G là trọng tâm . Chứng minh H,G,O thẳng hàng
c, Chứng minh P,Q,R đối xứng với H qua AC,BC,AB
d, Chứng minh OA vuông góc với EF và tam giác ARQ cân
e, EF cắt đường tròn tại E1 và F1. Chứng minh AE1 , AF1 là tiếp tuyến của đường tròn ngoại tiếp tam giác CEE1 và tam giác BFF1
f, Chứng minh K là trực tâm của tam giác IBC
h,Chứng minh ME và MF là tiếp tuyến của đường tròn ngoại tiếp tam giác AEF
Cho tam giác ABC có BE, CF là hai đường cao cắt nhau tại H. O là giao điểm của 3 đường trung tuyến của tam giác. M là trung điểm của BC. Chứng minh AH=2.OM
Cho tam giác nhọn abc các đường cao AD, BE, CF cắt nhau tại H, gọi O là trung điểm của BC, I là trung điểm của AH, K là giao điểm của EF, OI .
Chứng minh AH^2= 4.IK.IO
Ta có: ΔEAH vuông tại E
mà EI là đường trung tuyến
nên IE=IH
=>ΔIEH cân tại I
=>\(\widehat{IHE}=\widehat{IEH}\)
mà \(\widehat{IHE}=\widehat{BHD}\)(hai góc đối đỉnh)
và \(\widehat{BHD}=\widehat{BCE}\left(=90^0-\widehat{EBC}\right)\)
nên \(\widehat{IEH}=\widehat{BCE}\)
Ta có: ΔEBC vuông tại E
mà EO là đường trung tuyến
nên OE=OB
=>ΔOEB cân tại O
=>\(\widehat{OEB}=\widehat{OBE}\)
Ta có: \(\widehat{IEO}=\widehat{IEH}+\widehat{OEH}\)
\(=\widehat{EBC}+\widehat{ECB}=90^0\)
=>ΔIEO vuông tại E
Ta có: ΔAFH vuông tại F
mà FI là đường trung tuyến
nên FI=IH
=>FI=IE
=>I nằm trên đường trung trực của FE(1)
Ta có: ΔBFC vuông tại F
mà FO là đường trung tuyến
nên \(FO=\dfrac{BC}{2}\)
mà EO=BC/2
nên FO=EO
=>O nằm trên đường trung trực của EF(2)
Từ (1) và (2) suy ra IO là đường trung trực của EF
=>IO\(\perp\)EF tại K và K là trung điểm của FE
Xét ΔIEO vuông tại E có EK là đường cao
nên \(IK\cdot IO=IE^2\)
=>\(IK\cdot IO=\left(\dfrac{1}{2}AH\right)^2=\dfrac{1}{4}AH^2\)
=>\(AH^2=4\cdot IK\cdot IO\)
Cho tam giác ABC có các đường cao BE ,CF cắt nhau tại H.Gọi I là trung điểm của đoạn AH và K là trung điểm của cạnh BC .Biết AH = 6 cm ,BC = 8cm .Vậy IK bằng ...?