cho tam giác ABC có góc A = 90 AB= 15 cm AC= 20 cm
đường cao AH Từ H kẻ HD vuông góc AB & HE vuông góc AC CMR: AH2= AD.AB và AD.AB=AE.AC
Cho tam giác ABC có AB = 9 cm , AC =12cm , BC = 15 cm , kẻ đường cao AH vuông góc với BC ( H thuộc BC ). T ừ H kẻ HD vuông góc với AC . Tính độ dài đoạn HD
Hương dùng Py ta go đảo chứng minh tam giác vuông ở A nhé
Tam giác vuông HAC và tam giác vuông ABC đồng dạng vì có góc C chung suy ra AH/AB = AC/BC = HC/AC
thay số vào tính đc AH = 36/5 ; HC = 48/5
ta lại có HD.AC = AH.HC ( cùng bằng 2SAHC ).Suy ra HD = 144/25
Cho tam giác ABC có AB = 20, AC = 15, đường cao AH, kẻ HD và HE lần lượt vuông góc với AB và AC. CM: DE^3= EB.DE.EC
Cho tam giác vuông ABC có góc A bằng 90 độ ,đường cao AH ,Từ H kẻ HE vuông góc với AB, HD vuông góc với AC (E thuộc AB, D thuộc AC)
a Chứng minh EH // AD, EA // HD và AE = HD, EH= AD
b Chứng minh AH = ED
c ED và AH cắt nhau tại O .Chứng minh OA = OH = OE = OD
d .Vẽ trung tuyến AM của tam giác ABC. Chứng minh AM vuông góc với ED
a: Xét tứ giác AEHD có \(\widehat{AEH}=\widehat{ADH}=\widehat{DAE}=90^0\)
nên AEHD là hình chữ nhật
Suy ra: EH//AD; EH=AD: EA//HD; EA=HD
b: Vì AEHD là hình chữ nhật
nên AH=DE
c: Ta có: AEHD là hình chữ nhật
mà O là giao của hai đường chéo
nên OA=OE=OD=OH
Cho tam giác ABC vuông tại A, có đường cao AH và dường trung tuyến AM; AB=6,AC=8. Từ H kẻ HD vuông góc AB, HE vuông góc AC.
a.cm:AD.AB=AE.AC
b. Cm AM vuông góc DE
cho tam giác ABC vuông tại A, có đường cao AH; BH = 4cm, CH= 9cm. Từ H kẻ HD vuông góc AB, HE vuông góc AC.
a. Tính AH
Cho tam giác ABC(AB<AC) có 3 góc nhọn, kẻ đường cao AH (H thuộc BC). Từ H kẻ HD vuông góc AB và HE vuông góc AC (D thuộc AB, E thuộc AC)
a) C/m: tam giác ADH đồng dạng AHB
b)C/m: AD.AB=AE.AC
a: Xét ΔADH vuông tại D và ΔAHB vuông tại H có
góc DAH chung
=>ΔADH đồg dạng vơi ΔAHB
b: ΔAHB vuông tại H có HD là đường cao
nên AD*AB=AH^2
ΔAHC vuông tại H có HE là đường cao
nên AE*AC=AH^2
=>AE*AC=AD*AB
Cho tam giác abc có góc a=90 độ, đường cao ah. Từ h kẻ hm vuông góc ac, hn vuông góc ab
cho tam giác cân ABC có ABC : AB=AC=10cm , BC=12cm , gọi AH là tia phân giác góc A (H thuộc BC)
a. CM BH=HC và AH vuông góc BC
b. Tính độ dài AH
c. Kẻ HD vuông góc AB (D thuộc AB) HE vuông góc AC (E thuộc AC).Hỏi tam giác DHE là tam giác gì ?
d. CM DE//BC
Giúp mình với ạ 😭✨
a: ΔABC cân tại A có AH là phân giác
nên H là trung điểm của BC
ΔABC cân tại A có AH là trung tuyến
nên AH vuông góc BC
b: BH=CH=12/2=6cm
AH=căn AB^2-AH^2=8cm
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
góc DAH=góc EAH
=>ΔADH=ΔAEH
=>AD=AE và HD=HE
=>ΔHDE cân tại H
d: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
Cho tam giác ABC cân tại A. Kẻ AH vuông góc BC (H thuộc BC).
a/ Chứng minh Tam giác AHB = Tam giác AHC. Từ đó suy ra HB = HC
b/ Biết AH = 8 cm, BC = 12 cm. Tính độ dài AC.
c/ Kẻ HD vuông góc với AB (D thuộc AB), kẻ HE vuông góc với AC (E thuộc AC). Chứng minh Tam giác HDE cân.
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
=>HB=HC
b: BH=CH=12/2=6cm
=>AC=căn AH^2+HC^2=10cm
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
góc DAH=góc EAH
=>ΔADH=ΔAEH
=>HD=HE
=>ΔHDE cân tại H