Cho ΔABC vuông tại A, đg pg BE. Kẻ EH⊥BC; H∈BC. Gọi K∩AB∩HE. CMR
a) ΔABE=ΔHBE
b)BE là trung trực của đt AH
c)EK= EC
d)AE<EC
cho ΔABC cân tại A,PG BE và CF ,vẽ EH ⊥BC.Đường thẳng EH cắt AB tại K. a)CM: ΔAEF cân b)CM:EF//BC, ΔBEF cân,c)CM:EH<EK
ΔABC vuông tại A,AB<AC trên cạnh BC lấy điểm D sao cho BA=BD ,kẻ DE\(\perp\)BC(EϵAC)
a,CM ΔABE=ΔDBE
b,BE là pg của B
c,BE\(\perp\)AD
d,EZ<AC
a: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có
BE chung
BA=BD
=>ΔBAE=ΔBDE
b: ΔABE=ΔDBE
=>góc ABE=góc DBE
=>BE là phân giác của góc ABD
c: BA=BD
EA=ED
=>BE là trung trực của AD
=>BE vuông góc AD
d: EA=ED
ED<EC
=>EA<EC
Cho ΔABC vuông tại A, phân giác BE (E ∈ AC). Kẻ EH ⊥ BC tại H. Chứng minh rằng:
a) EB là phân giác của AEH. b) BE là trung trực của AH.
c) ΔKEC cân (K là giao điểm của AB và EH). d) AE < EC.
a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)
Do đó: ΔBAE=ΔBHE
Suy ra: \(\widehat{AEB}=\widehat{HEB}\)
hay EB là tia phân giác của \(\widehat{AEH}\)
b: Ta có: ΔBAE=ΔBHE
nên BA=BH và EA=EH
Ta có: BA=BH
nên B nằm trên đường trung trực của AH\(\left(1\right)\)
Ta có: EA=EH
nên E nằm trên đường trung trực của AH\(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra BE là đường trung trực của AH
c: Xét ΔAEK vuông tại A và ΔHEC vuông tại H có
EA=EH
\(\widehat{AEK}=\widehat{HEC}\)
Do đó: ΔAEK=ΔHEC
Suy ra: EK=EC
Xét ΔEKC có EK=EC
nên ΔEKC cân tại E
d: Ta có: EA=EH
mà EH<EC
nên EA<EC
Cho tam giác vuông tại A ,BD là tia pg của góc B. E thuộc BC BE=BA.
a. Cm DE vuông với BE
b. BD là đng trung trực của AE
c. Kẻ AH vuông với BC. So sánh EH và DC
Cho ΔABC vuông tại A, đường phân giác BE. Kẻ EH ⏊BC (H thuộc BC). Gọi K là
giao điểm của AB và HE. Chứng minh rằng:
a) ΔABE = ΔHBE
b) BE là đường trung trực của đoạn thẳng AH.
c) EK = EC
d) AE < EC
a) Xét hai tam giác vuông ΔABE và ΔHBE có:
∠ABE = ∠HBE (BE là tia phân giác giả thiết)
BE cạnh chung
⇒ ΔABE = ΔHBE (cạnh huyền - góc nhọn)
Vậy ΔABE = ΔHBE
b) AB = HB (2 cạnh tương ứng)
⇒ B thuộc đường trung trực của đoạn AH (1)
AE=HE (2 cạnh tương ứng)
⇒ E thuộc đường trung trực của đoạn AH (2)
Từ (1) và (2) ⇒ BE là đường trung trực của đoạn AH
Vậy BE là đường trung trực của đoạn AH
c) Xét hai tam giác vuông ΔAEK và ΔHEC có:
∠AEK = ∠HEC (đối đỉnh)
AE = HE (cmt)
⇒ ΔAEK = ΔHEC (cạnh góc vuông - góc nhọn)
⇒ EK = EC (2 cạnh tương ứng) (3)
Vậy EK = EC
d) Ta có: ΔAEK vuông tại A
⇒ ∠K<∠A
⇒ AE<KE (4)
Từ (3) và (4) ⇒ AE<EC
Vậy AE<EC
a) Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)(BE là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔABE=ΔHBE(Cạnh huyền-góc nhọn)
b) Ta có: ΔABE=ΔHBE(cmt)
nên BA=BH(Hai cạnh tương ứng) và EA=EH(hai cạnh tương ứng)
Ta có: BA=BH(cmt)
nên B nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: EA=EH(cmt)
nên E nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra BE là đường trung trực của AH
c) Xét ΔAEK vuông tại A và ΔHEC vuông tại H có
EA=EH(cmt)
\(\widehat{AEK}=\widehat{HEC}\)(hai góc đối đỉnh)
Do đó: ΔAEK=ΔHEC(Cạnh góc vuông-góc nhọn kề)
Suy ra: EK=EC(Hai cạnh tương ứng)
d) Ta có: EA=EH(cmt)
mà EH<EC(ΔEHC vuông tại H)
nên AE<CE
cho tam giác ABC vuông tại A.Phân giác góc B cát AC ở E. Từ E kẻ EH vuông góc với BC tại H.Đường thẳng EH cắt đg thẳng AB tại I
a,CM tam giác BAE = tam giác BHE
b, CM tam giác EIC cân
c, CM BE vuông góc với IC
a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)
Do đó: ΔBAE=ΔBHE
b: Xét ΔAEI vuông tại A và ΔHEC vuông tại H có
EA=EH
\(\widehat{AEI}=\widehat{HEC}\)
Do đó: ΔAEI=ΔHEC
Suy ra: EI=EC
hay ΔEIC cân tại E
c: Ta có: BA+AI=BI
BH+HC=BC
mà BA=BH
và AI=HC
nên BI=BC
mà EI=EC
nên BE là đường trung trực của CI
hay BE\(\perp\)CI
Cho ΔABC vuông tại A, có AB =6cm,AC=8cm. a) tính độ dài cạnh BC. b) kẻ đường phân giác BE của Δ ABC, kẻ ED vuông góc với BC (D thuộc BC). Chứng minh ΔABE=ΔHBE c) gọi F là giao điểm của AB và EH. Khi góc ABC =60 độ thì ΔFBC là tam giác gì?
a: BC=căn 6^2+8^2=10cm
b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
góc ABE=góc HBE
=>ΔBAE=ΔBHE
c Xét ΔBHF vuông tại H và ΔBAC vuông tại A có
BH=BA
góc HBF chung
=>ΔBHF=ΔBAC
=>BF=BC
mà góc FBC=60 độ
nên ΔBFC đều
Bài 26. Cho ΔABC vuông tại A, đường phân giác BE. Kẻ EH ⏊BC (HÎBC). Gọi K là
giao điểm của AB và HE. Chứng minh rằng:
a) ΔABE = ΔHBE
b) BE là đường trung trực của đoạn thẳng AH.
c) EK = EC
d) AE < EC
a) Xét hai tam giác vuông ΔABE và ΔHBE có:
ˆABE=ˆHBE (do BE là tia phân giác giả thiết)
BE cạnh chung
⇒ΔABE=ΔHBE(cạnh huyền_góc nhọn)
b) AB=HB(2 cạnh tương ứng) suy ra B thuộc đường trung trực của đoạn AH (1)
AE=HE (2 cạnh tương ứng) suy ra E thuộc đường trung trực của đoạn AH (2)
Từ (1) và (2) suy ra BE là đường trung trực của đoạn AH
c) Xét hai tam giác vuông ΔAEK và ΔHEC
ˆAEK=ˆHEC (đối đỉnh)
AE=HE (chứng minh trên)
⇒ΔAEK=ΔHEC (cạnh góc vuông- góc nhọn)
⇒EK=EC (2 cạnh tương ứng) (3)
Ta có tam giác AEK vuông tại A
⇒ˆK<ˆA
⇒AE<KE (4)
Từ (3) và (4) ⇒AE<EC
Cho tg ABC vuông tại A, đường pg BE kẻ EH vuông góc với BC ( H thuộc BC ). Gọi K là giao điểm của hai đường thẳng AB và HE . CHứng minh rằng
a) Tg ABE = tg HBE
b) BE là đường trung trực của đoạn thẳng AH
c) EK = EC
d) CE + EH > AH
Giải nhanh cho mình với