Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 5 2017 lúc 3:43

*Gọi G là giao điểm của AH và DE

Ta có: GA = GD = GH = GE (tính chất hình chữ nhật)

Suy ra tam giác GHD cân tại G

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra tam giác NCE cân tại N ⇒ NC = NE     (16)

Từ (13) và (16) suy ra: NC = NH hay N là trung điểm của CH.

nguyễn hương trà
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 1 2022 lúc 20:07

a: XétΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

phạm thuỳ linh
Xem chi tiết
Chi Nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 7 2021 lúc 13:59

Ta có: ΔAHC vuông tại H(Gt)

mà HN là đường trung tuyến ứng với cạnh huyền AC(gt)

nên HN=AN

Ta có: ΔAHB vuông tại H(gt)

mà HM là đường trung tuyến ứng với cạnh huyền AB(gt)

nên HM=AM

Xét ΔNAM và ΔNHM có 

NA=NH(cmt)

MA=MH(cmt)

NM chung

Do đó: ΔNAM=ΔNHM(c-c-c)

Suy ra: \(\widehat{NAM}=\widehat{NHM}\)(hai góc tương ứng)

mà \(\widehat{NAM}=90^0\)(gt)

nên \(\widehat{NHM}=90^0\)

hay MH\(\perp\)NH(đpcm)

Bùi Thị Minh Phương
Xem chi tiết
Yeutoanhoc
26 tháng 6 2021 lúc 7:50

Bạn tự vẽ hình nhé hình này rất dễ thôi :v

a)Xét tam giác cân ABC có:AM là trung tuyến

`=>` AM là đường cao

`=>AM bot BC`

Xét tam giác ABM và tam giác ACM có:

`AM` chung

`hat{AMB}=hat{AMC}=90^o(CMT)`

`BM=MC`(do m là trung điểm)

`=>Delta ABM=Delta ACM(cgc)`

`b)` Xét tam giác vuông BHM và tam giác vuông CKM ta có:

`BM=CM`(M là trung điểm)

`hat{ABC}=hat{ACB}`(do tam giác ABC cân)

`=>Delta BHM=Delta CKM`(ch-gn)

`=>BH=CK`

Cô Hoàng Huyền
Xem chi tiết
địt con mẹ mày
20 tháng 3 2021 lúc 10:20

anh đây đẹp troai, chim dài mét hai !

Khách vãng lai đã xóa
Phạm Đức Tấn Phát
27 tháng 9 2021 lúc 11:09

a) Tứ giác AEHD là hình chữ nhật (tứ giác có 3 góc vuông).
Vì vậy DE = AH.
Áp dụng hệ thức lượng trong tam giác vuông, ta có: 
AH^2=BH.HC=4.9=36\Rightarrow AH=6\left(cm\right).
Vậy DE = AH = 6(cm).
b) Gọi O là giao điểm của AH và DE. Tứ giác ADHE là hình chữ nhật, suy ra OD = OH.
Xét tam giác DMO và tam giác HMO có:
MO chung
OD = OH
\widehat{ODM}=\widehat{OHM}=90^o
Suy ra \Delta DMO=\Delta HMO (ch - cgv).
Vì vậy DM=MH. (1) 
Từ đó suy ra tam giác MDH cân tại M hay \widehat{MDH}=\widehat{DHM}.
Có \widehat{BDM}+\widehat{MDH}=90^o,\widehat{DBH}+\widehat{DHB}=90^o.
Suy ra \widehat{MDB}=\widehat{DBM}. Vì vậy tam giác BDM cân tại M hay MB = MD.  (2)
Từ (1) và (2) suy ra BM = MH hay M là trung điểm của BH.
Chứng minh tương tự ta có N là trung điểm của CH.
c) Tứ giác EDMN là hình thang với đường cao DE, các đáy DM và EN.
DM = BH : 2 = 2(cm), EN = AH : 2 = 4,5(cm).
Diện tích hình thang EDMN là:
\dfrac{DE.\left(DM+EN\right)}{2}=\dfrac{6\left(2+4,5\right)}{2}=19,5\left(cm^2\right)

Khách vãng lai đã xóa
Nguyễn Anh Tú
27 tháng 9 2021 lúc 20:36

a) Tứ giác AEHD là hình chữ nhật (tứ giác có 3 góc vuông).
Vì vậy DE = AH.
Áp dụng hệ thức lượng trong tam giác vuông, ta có: 
AH^2=BH.HC=4.9=36\Rightarrow AH=6\left(cm\right).
Vậy DE = AH = 6(cm).
b) Gọi O là giao điểm của AH và DE. Tứ giác ADHE là hình chữ nhật, suy ra OD = OH.
Xét tam giác DMO và tam giác HMO có:
MO chung
OD = OH
\widehat{ODM}=\widehat{OHM}=90^o
Suy ra \Delta DMO=\Delta HMO (ch - cgv).
Vì vậy DM=MH. (1) 
Từ đó suy ra tam giác MDH cân tại M hay \widehat{MDH}=\widehat{DHM}.
Có \widehat{BDM}+\widehat{MDH}=90^o,\widehat{DBH}+\widehat{DHB}=90^o.
Suy ra \widehat{MDB}=\widehat{DBM}. Vì vậy tam giác BDM cân tại M hay MB = MD.  (2)
Từ (1) và (2) suy ra BM = MH hay M là trung điểm của BH.
Chứng minh tương tự ta có N là trung điểm của CH.
c) Tứ giác EDMN là hình thang với đường cao DE, các đáy DM và EN.
DM = BH : 2 = 2(cm), EN = AH : 2 = 4,5(cm).
Diện tích hình thang EDMN là:
\dfrac{DE.\left(DM+EN\right)}{2}=\dfrac{6\left(2+4,5\right)}{2}=19,5\left(cm^2\right).

Khách vãng lai đã xóa
Cao Minh
Xem chi tiết
32 - Thành Trung 8A11
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 12 2021 lúc 22:29

a: Xét ΔHAB có 

M là trung điểm của HA

N là trung điểm của HB

Do đó: MN là đường trung bình

=>MN//AB

hay ABNM là hình thang

Nguyễn Ngọc phương Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 8 2022 lúc 23:57

Bài 1:

a: Ta có: ΔBKC vuông tại K

mà KM là đường trung tuyến

nên KM=BC/2(1)

Ta có: ΔBHC vuông tại H

mà HM là đường trung tuyến

nên HM=BC/2(2)

Từ (1)và (2) suy ra MH=MK

hay ΔMHK cân tại M

b: Kẻ MN vuông góc với HK

=>N là trung điểm của HK

Xét hình thang CBDE có

M là trung điểm của BC

MN//DB//EC

DO đó: N là trung điểm của DE

=>DK=HE