\(\Delta\)ABC cân tại A | |
GT | Đường phân giác BD, CE |
D\(\in\)AC; E\(\in\)AB | |
KL | Tứ giác BEDC là htc có đáy nhỏ = cạnh bên |
\(\Delta ABC\)cân tại A, kẻ \(BD\perp AC,CE\perp AB\left(D\in AC,E\in AB\right)\).Gọi I là giao điểm của BD và CE.CM
a) BD=CE
b) AI là tia phân giác của \(\widehat{BAC}\)
a) Xét tam giác ABD và tam giác ACE có
góc ADB = góc AEC = 90 độ
AB=AC
góc A: chung
=> tam giác ABD = tam giác ACE (cạnh huyền - góc nhọn)
=> BD=CE và AD=AE
b) Vì AB=AC và AE=AD => AB-AE=AC-AD => BE=CD
Xét tam giác IEB và tam giác IDC có
góc IEB = góc IDC = 90 độ
BE=CD
góc BIE = góc CID (đối đỉnh)
=> tam giác IEB = tam giác IDC => IB=IC
c) Xét tam giác AIB và tam giác AIC có
AB=AC
IB=IC
AO: cạnh chung
=> tam giác AIB = tam giác AIC (c.c.c)
=> góc IAB=góc IAC
=> AI la tia phân giác góc BAC
K MK NHÁ
AI K MK ,MK K LẠI NÈ
Cho hình tam giác ABC cân tại A,các đường phân giác BD,CE ( D\(\in\)AC , E\(\in\)AB ).Chứng minh rằng ABCD là hình thang cân
Ai làm nhanh mik cho 3 k
làm nhanh nhé
năn nỉ đó
trong sách giáo khoa có nha... sách giáo khoa toán 8... Phần hình ( HÌnh thang cân )
Cho \(\Delta ABC\) cân tại A có AB = AC = 6cm; BC = 4cm. Các đường phân giác BD và CE cắt nhau tại I \(\left(E\in AB;D\in AC\right)\)
a, Tính độ dài AD và ED?
b, C/minh: \(\Delta ADB\sim\Delta AEC\)
c, C/minh: IE. CD = ID. BE
d, Cho \(S_{ABC}=60cm^2.TinhS_{AED}?\)
cho tam giác ABC cân tại A, lấy điểm D trên cạnh AB, lấy điểm E trên cạnh AC sao cho BD=CE. Chứng mình rằng
a) DE // BC
b) \(\Delta\)ABE = \(\Delta\)ACD
c) \(\Delta\)BID=\(\Delta\)CIE ( I là giao điểm của BE và CD )
d) AI là phân giác của góc BAC
e) AI \(\perp\) BC
f) tìm vị trí D,E để BD=DE=EC
a: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
b: Xét ΔABE và ΔACD có
AB=AC
góc A chung
AE=AD
=>ΔABE=ΔACD
c: Xét ΔIDB và ΔIEC có
góc IDB=góc IEC
DB=EC
góc IBD=góc ICE
=>ΔIDB=ΔIEC
d: Xét ΔABI và ΔACI có
AB=AC
BI=CI
AI chung
=>ΔABI=ΔACI
=>góc BAI=góc CAI
=>AI là phân giác của góc BAC
cho tam giác ABC có AB<AC, hai đường cao BD , CE cắt nhau tại H(D\(\in\)AC;E\(\in\)AB) . Cguwngs minh rằng:
a,\(\Delta HDC\sim\Delta HEB\) từ đó suy ra HD.HB=HE.HC
b, góc ADE= góc ABC
c, \(BC^2=BH.BD+CH.CE\)
Bạn tự vẽ hình nhé^^
a) xét tam giác HDC và tam giác HEB có:
góc E= góc D(=90 độ)
góc EHB = góc DHC(2 góc đối đỉnh)
=> tam giác HDC đồng dạng tam giác HEB(g-g)
=>HD/HE = HC/HB=> HD.HB=HE.HC(đpcm)
b)Xét tam giác ADB vuông tại D và tam giác AEC Vuông tại E có:
góc A: góc chung
=> tam giác ADB đồng dạng tam giác AEC (g-g)
=>AD/AE=AB/AC
Xét tam giác AED và tam giác ACB có:
góc A: góc chung
AD/AE=AB/AC (cmt)
=> tam giác AED đồng dạng tam giác ACB(c-g-c)
=>góc ADE=góc ABC (đpcm)
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có
chung
Do đó: ΔABDΔACE(g-g)
b) Xét ΔHEB vuông tại E và ΔHDC vuông tại D có
(hai góc đối đỉnh)
Do đó: ΔHEBΔHDC(g-g)
hay
Cho tam giác ABC có 2 đường cao BD,CE
Biết BD>=AC và CE>=AB
Chứng minh: Tam giác ABC vuông cân tại A
Cho tam giác ABC cân tại A. Các đường phân giác BD và CE cắt nhau tại I (D thuộc AC; E thuộc AB). C/minh:
a, BD = CE
b, AI là phân giác của góc A
c, BE = ED = DC
cho tam giác abc cân tại a vẽ phân giác góc b cắt ac tại d phân giác góc c cắt ab tại e . i là giao điểm của bd và ce . cm a , tam giác ibc cân. b, bd=ce
Cho tam giác ABC cân tại A, các đường phân giác BD, CE ( \(D\in AC,E\in AB\) )
Chứng minh rằng BEDC là hình thang có đáy nhỏ bằng cạnh bên.
Cho ∆ABC cân tại A, biết AB=AC=6 cm, BC= 4cm. Câc đường phân giác BD,CE cắt nhau tại I Tính BD,CE