Cho tam giác ABC. Gọi M là trung điểm của BC. Kẻ BH vuoopng góc AM; CK vuông góc AM Biết BH =5cm Khi đó CK=...cm
cho tam giác abc gọi m là trung điểm bc. từ b kẻ bh vuông góc với am, ck vuông góc với am. chứng minh: bh=ck
vẽ hình nữa nha
Xét ΔMHB vuông tại H và ΔMKC vuông tại K có
MB=MC
góc HMB=góc KMC
=>ΔMHB=ΔMKC
=>HB=CK
Cho tam giác ABC vuông cân tại A. Gọi E là trung điểm của BC. M là điểm bất kì thuộc cạnh BC (M khác E). Kẻ BH vuông góc với AM tại H và CK vuông góc với AM tại K.
a) Chứng minh △KAC = △HBA
b) Chứng minh AE vuông góc với BC.
c) Tam giác KEH là tam giác gì? Vì sao?
b: Ta có: ΔABC cân tại A
mà AE là đường trung tuyến
nên AE là đường cao
: Cho tam giác ABC có và tia phân giác BH ( H AC). Kẻ HM vuông góc với BC ( M BC). Gọi N là giao điểm của AB và MH. Chứng minh:
a) Tam giác ABH bằng tam giác MBH.
b) BH là đường trung trực của đoạn thẳng AM .
a) .
Xét tam giác ABH và tam giác MBH có :
AB = BH(BE là tia phân giác)
góc ABH = góc HBM(BE là tia phân giác)
BH cạnh chung
đo đó : tam giác ABH = tam giác MBH (c.g c) (1)
b)
Từ (1) suy ra:
tam giác ABM cân tại B mà BH là phân giác
=>BE là trung trực của đoạn thẳng AM
Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM (AM thuộc BC). Từ M kẻ MH vuông góc AC. Trên tia đối của MH lấy điểm K sao cho MK = MH a) Chứng minh tam giác MHC = tam giác MKB b) Chứng minh AB vuông góc AC c) Gọi G là trung điểm của BH và AM, I là trung điểm của AB. Chứng minh I, G, C thẳng hàng
cho tam giác abc đều đường cao ah vuông góc vs bc lấy m thuộc bh gọi o là trung điểm am từ m kẻ mk vuông góc ab md vuông góc ac.CMR tam giác koh đều
Cho tam giác ABC có AB =9cm,AC=12cm,BC=15cm.
a) Chứng minh tam giác ABC vuông
b) Vẽ trung tuyến AM,từ M kẻ MH vuông góc AC.Trên tia đối tia MH lấy điểm K sao cho MK=MH.Chứng minh tam giác MHC=tam giác MKB .
C) gọi g là giao điểm của bh và am gọi i là trung điểm của ab cm i,g,c thẳng hàng
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Xét ΔMHC và ΔMKB có
MH=MK
\(\widehat{HMC}=\widehat{KMB}\)
MC=MB
Do đó: ΔMHC=ΔMKB
Cho tam giác ABC, M là trung điểm BC. Kẻ BH vuông góc AM, CK vuông góc AM.
a, Chứng minh BH//CK , BH=CK
b, Chứng minh: BK//CH , BH=CH
c, Gọi E là trung điểm BK , F là trung điểm CH . Chứng minh E,M,F thẳng hàng
d, Chứng minh: tam giác AEF cân
a) xét 2 tam giác vuông t/giác BHM và t/giác CKM, có
BM = MC ( M là t/điểm của BC)
góc cmk = góc bmh ( đối đỉnh)
=> t/giác BHM = t/giác CKM ( cạnh huyền góc nhọn )
=> góc H = góc K mà chúng ở vị trí slt => BH // KC
=> BH = CK ( 2 cạnh tuowg ứng)
b) tương tự câu a
từ câu a suy ra BM=MC và MH=MK
suy ra tú giác BKCH là hình bình hành
suy ra BK song song vs CH và BK=CH
Gọi M là trung điểm cạnh BC của tam giác ABC. kẻ BH vuông góc AMvà CK vuông góc AM . Chứng minh
a, BH//CK
b, M là trung điểm của HK
c, HC//BK
Gọi M là trung điểm cạnh BC của tam giác ABC. kẻ BH vuông góc AMvà CK vuông góc AM . Chứng minh
a, BH//CK
b, M là trung điểm của HK
c, HC//BK