Cho tam giác ABC, kẻ BH vuông góc AC ( H thuộc AC); CK vuông góc AB ( K thuộc AB). Biết BH = CK. Chứng minh tam giác ABC cân.
Cho tam giác abc cân tại b . Kẻ bh vuông góc ac (h thuộc ac) Cm a) tam giác abc = tam giác cbh b) cho bh = 4 cm, ac = 6 cm . Tính bc =? c) kẻ he vuông góc ab, hf vuông góc bc . Cm be= bf
Cho tam giác ABC cân tại A. Điểm M thuộc cạnh BC. Kẻ MD vuông góc với AB (D thuộc AB). Kẻ ME vuông góc với AC (E thuộc AC). Kẻ BH vuông góc với AC (H thuộc AC). CM: MD + MẸ = BH
Cho tam giác ABC cân tại A, Điểm M thuộc cạnh BC. Kẻ MD vuông góc AB(D thộc AB), kẻ MEvuông góc AC(e thuộc AC), Kẻ BH vuông góc AC(H thuộc AC). C/m MD+ME=BH
tam giác ABC cân ở A, M thuộc BC, kẻ MD vuông góc với AB (D thuộc AB) Kẻ ME vuông góc với AC (E thuộc AC) Kẻ BH vuông góc với AC, H thuộc AC. C/M: MD+ME=BH
Cho tam giác ABC cân tại A, có góc A nhọn. Lấy M là 1 điểm thuộc BC. Kẻ MD, ME lần lượt vuông góc với AB, AC ( D thuộc AB, E thộc AC) và kẻ BH vuông góc AC ( H thuộc AC), MK vuông góc với BH (K thuộc BH).
a) Chứng minh: Tam giác BKM = tam giác MDB.
b) CM: Tam giác KHM = tam giác EHM.
c) CM:MD+ME=BH.
Cho tam giác ABC cân tại A có AB = AC = 5cm, kẻ AH vuông góc với BC (H thuộc BC).
a) Chứng minh: BH = HC và góc BAH = góc CAH
b) Tính độ dài BH biết AH = 4cm.
c) Kẻ HD vuông góc với AB (D thuộc AB), kẻ EH vuông góc với AC (E thuộc AC). Tam giác ADE là tam giác gì ? Vì sao ?
a: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC và AH là phân giác của góc BAC
=>góc BAH=góc CAH
b: \(BH=\sqrt{5^2-4^2}=3\left(cm\right)\)
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
góc DAH=góc EAH
Do đó: ΔADH=ΔAEH
=>AD=AE
=>ΔADE cân tại A
tam giác ABC cân ở A, M thuộc BC, kẻ MD vuông góc với AB (D thuộc AB) Kẻ ME vuông góc với AC (E thuộc AC) Kẻ BH vuông góc với AC, H thuộc AC. C/M: MD+ME=BH
cho tam giác ABC cân tại A M thuộc BC kẻ MD vuông góc với AB (D thuộc BC) kẻ MD vuông góc với AB (D thuộc AB ) kẻ ME vuông góc với AC(E thuộc AC) kẻ BH vuông góc với AC(H thuoc AC)