Cho hình thang ABCD (AB//CD), Gọi M là trung điểm AD, Và N là trung điểm BC
a) c/m ABNM là hình thang
b) Biết AB=5cm; CD=7cm. Tính MN
Cho hình thang ABCD có AB// CD; AB = 10cm , CD = 12cm, đường cao AH = 6cm . Gọi M và N lần lượt là trung điểm của AD và BC. Tính diện tích tứ giác ABNM?
A. 30 c m 2
B. 29,5 c m 2
C. 27,5 c m 2
D.31,5 c m 2
Xét hình thang ABCD có M và N lần lượt là trung điểm của AD và BC nên MN là đường trung bình của hình thang:
Suy ra: MN// AB// CD và
Suy ra: tứ giác MNCD là hình thang.
Vì M là trung điểm của AD và đường cao AH = 6cm nên chiều cao xuất phát từA của hình thang MNCD là:
Diện tích hình thang ABNM là :
Chọn đáp án D
Cho hình thang ABCD có AB//CD, AB = 3cm và CD = 7cm. Gọi M; N là trung điểm của AD và BC. Độ dài của MN là:
A. 5dm C. 4cm
B. 5cm D. 6cm
Cho hình thang ABCD ( AB//CD), M,N lần lượt là trung điểm của AD và BC.
a> Biết AD=3cm, MN= 2cm. Tính chu vi của hình thang ABCD.
b> Biết MN=5cm. Tính tổng AB và CD.
Cho tư giác ABCD. Gọi M,N là trung điểm của AD và BC, Biết MN=(AB+CD)/2. C/m ABCD là hình thang
1. Cho tứ giác ABCD. Gọi M,N là trung điểm của AD và BC. Biết MN=(AB+CD):2. C/M ABCD là hình thang
Cho tứ giác ABCD. Gọi M, N là trung điểm của AD và BC, biết MN =(AB + CD)/2. C/M ABCD là hình thang
gọi I là giao điểm của MN và BD
ta có
MN=(AB + DC)/2
=> MI + IN = AB/2 + DC/2
=> MI = AB/2 và IN = DC/2
=> MI và IN là đường tb của tam giác ABD và tam giác BDC
=> MI // AB và IN // DC
vì M,I,N thẳng hàng nên => AB // DC => tứ giác ABCD là hình thang
Cho hình thang vuông ABCD (AB //CD, ) AB = 3cm, DC = 5cm. Gọi M và N lần lượt là trung điểm của AD và BC. Đường thẳng qua B song song với AD cắt DC tại E. a) Tính MN. b) Tứ giác ABED là hình gì? Vì sao? c) Gọi I là giao điểm của BE và MN. Chứng minh MI = 3.IN. d) Chứng minh tam giác ENC cân.
a) Xét hình thang ABCD(AB//CD) có
M là trung điểm của AD(gt)
N là trung điểm của BC(gt)
Do đó: MN là đường trung bình của hình thang ABCD(Định nghĩa đường trung bình của hình thang)
Suy ra: MN//AB//DC và \(MN=\dfrac{AB+CD}{2}\)(Định lí 4 về đường trung bình của hình thang)
hay \(MN=\dfrac{3+5}{2}=\dfrac{8}{2}=4\left(cm\right)\)
b) Ta có: AD//BE(gt)
AD\(\perp\)DC(gt)
Do đó: BE\(\perp\)DC(Định lí 2 từ vuông góc tới song song)
Xét tứ giác ABED có
\(\widehat{BAD}=90^0\)(gt)
\(\widehat{ADE}=90^0\)(gt)
\(\widehat{BED}=90^0\)(cmt)
Do đó: ABED là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
Cho hình thang ABCD(AB song songCD; AB<CD). Gọi M và N lần lượt là trung điểm của AB và CD. E và F lần lượt là trung điểm của hai đường chéo AC và BD.
a, Chứng minh MENF là hình bình hành.
b, Hình thang ABCD phải thêm điều kiện gì để MENF là hình chữ nhật.
c, Tính diện tích tam giác ADC biết AD=3cm, AC=5cm, trung tuyến AN=2cm.
a) Xét tam giác ABD có :
M là trung điểm của AB
F là trung điểm của BD
=) MF là đường trung bình của tam giác ABD
=) MF//AD và MF=\(\frac{1}{2}\)AD (1)
Xét tam giác tam giác ACD có :
N là trung điểm CD
E là trung điểm AC
=) NE là đường trung bình của tam giác ACD
=) NE//AD và NE=\(\frac{1}{2}\)AD (2)
Từ (1) và (2) =) Tứ giác MENF là hình bình hành
Bài 7: Cho hình thang vuông ABCD có góc A bằng góc D và cùng bằng 90. AB = 3cm, AD = 8cm. CD = 5cm. Gọi M, N theo thứ tự là trung điểm của BC, AD. Gọi K là hình chiếu của M trên CD. Chứng minh MNDK là hình vuông
cho hình thang ABCD có góc A= góc B=90 độ, AB=3cm,AD=8cm , CD=5cm. a)tính BC b) GỌi M và N lần lượt là trung điểm của AD và BC vẽ NE vuông góc với CD chứng minh tứ giác MNED là hình vuông
ai giups mik vs