Cho tứ giác ABCD có AB = AD ; CB= CD
a) Chứng minh AC là đường trung trực của BD
b) Tính góc B ; D biết góc A = 1000; và góc C = 600
1/Cho tứ giác ABCD có AB//CD,AD//BC.Chứng minh AD=BC,AB=CD.
2/Cho tứ giác ABCD có AB//CD,AB=CD.Chứng minh AD//BC và AD=BC
1/nối AC
Do AB//CD=>BAC=ACD(so le trong)
Do AD//BC=>ACB=DAC(so le trong)
Xét ∆ABC và ∆ACD
ACB=DAC(chứng minh trên)
BAC=DAC(chứng minh trên)
AC chung
Vậy ∆ABC=∆CDA(g.c.g)=>AB=DC(cặp cạnh tương ứng)
AD=BC(cặp cạnh tương ứng)
Cho tứ giác ABCD có B ^ = D ^ = 90 0 , C ^ = 30 0 , AB=4cm và AD = 3cm. Tính diện tích tứ giác ABCD
Kẻ BH ⊥ DC tại H. Chú ý diện tích ABCD bằng tổng diện tích của ABHD và BHC
Cho tứ giác ABCD, có AB // CD, AD // với BC. Chứng minh AB=CD, AD=BC
Xét tứ giác ABCD có
AB//CD
AD//BC
DO đó: ABCD là hình bình hành
Suy ra: AB=CD; AD=BC
Xét tứ giác ABCD có:
AD//BC
AB//CD
Suy ra: Tứ giác ABCD là hình bình hành vì có 2 cặp cạnh song song
Suy ra: AB=CD; AD=BC
cho tứ giác abcd có ab//cd, ad//bc cm ab = cd , ad-= bc
Cho tứ giác ABCD có: AB=5cm; AB+BC=12cm; BC+CD=12cm; CD+AD=12cm. CM: tứ giác ABCD là hình bình hành
helpp
AB = 5cm
=> BC = 12 - 5 = 7cm
=> CD = 12 - 7 = 5cm
=> AD = 12 - 5 = 7cm
Vì AB = CD, BC = AD, mà AB đối CD, BC đối AD
=> Tứ giác ABCD là hbh
Cho tứ giác ABCD có đường chéo BD chia tứ giác đó thành hai tam giác đồng dạng ΔABD ⁓ ΔBDC. Cho AB = 2cm, AD = 3cm, CD = 8cm. Tính đọ dài cạnh còn lại của tứ giác ABCD.
A. BC = 6cm
B. BC = 4cm
C. BC = 5cm
D. BC = 3cm
Vì ΔABD ⁓ ΔBDC nên A B B D = B D D C = A D B C , tức là 2 B D = B D 8 = 3 B C
Ta có B D 2 = 2.8 = 16 nên BD = 4 cm
Suy ra BC = 8.3 4 = 6 cm
Vậy BD = 4cm, BC = 6cm
Đáp án: A
1) Cho tứ giac ABCD có bốn góc vuông ( hình chữ nhật ABCD) . Cmr : AB=CD , AD=BC
2) CHO TỨ GIÁC ABCD CÓ AB=CD , AD=BC . CMR : tia phân giác của góc A, C song song với nhau
một bài một tick nhé , mình có 2 account
1: Ta có:ABCD là hình chữ nhật
nên AB=CD;AD=BC
2: Xét tứ giác ABCD có
AB=CD
AD=BC
Do đó: ABCD là hình bình hành
Xét ΔADE và ΔCBF có
\(\widehat{D}=\widehat{B}\)
AD=CB
\(\widehat{DAE}=\widehat{BCF}\)
Do đó: ΔADE=ΔCBF
Suy ra: \(\widehat{AED}=\widehat{CFB}\)
=>\(\widehat{AEC}=\widehat{CFA}\)
Xét tứ giác AECF có
\(\widehat{AEC}=\widehat{CFA}\)
\(\widehat{FAE}=\widehat{FCE}\)
Do đó: AECF là hình bình hành
Suy ra: AE//CF
cho tứ giác ABCD có: góc A = 110 độ, góc B = 70 độ. AB=BC=AD. chứng minh tứ giác ABCD là hình thang cân???
Kẻ .BN vuông AD, BM vuông CD
Xét tam giác vuông BNA và BMD có
+ AB = BC
+ BNA = 1800 - BAD = 700 nên BAN = BCD = 700
=> tam giác BMD= tam giác BND(cạnh huyền - góc nhọn)
Suy ra : BN = BM => BD là phân giác góc D
Nối B vs D, do AB = AD nên tam giác ABD cân tại A khi đó ADB = (1800 - 1100) :2 = 350
=>ADC = 700
Do ADC + BAD = 1800 => AB song song CD
VÀ BCD = ADC =700
=> tứ giác ABCD là hình thang cân (đpcm)
chúc bạn học giỏi!! ^^
ok mk nhé!! 3564774734563476576855957234234342342323435345345456465465475676578658563463434
Cho tứ giác ABCD có AB = CB, AD = AC = CD và góc A = 105 độ. Tính các góc của tứ giác ABCD.
cho tứ giác ABCD có AB // CD và AB = CD . C/m : AD = BC và AD // BC
Chứng minh rằng AK=KC,BI=ID
vì FE là đường trung bình hình thang nên FE//AB//CD
E, F là trung điểm của AD và BC nên AK=KC
BI=ID
( trong tam giác đường thẳng qua trung điểm của 1 cạnh, // với cạnh thứ 2 thì qua trung điểm cạnh thứ 3)
Xét t/g ABC và t/g CDA có :
AC cạnh chung
AB = CD ( gt )
\(\widehat{A1}=\widehat{C1}\)( slt , AB // CD )
\(\Rightarrow\)t/g ABC = t/g CDA ( c-g-c )
\(\Rightarrow\)BC = AD
\(\widehat{A2}=\widehat{C2}\) và 2 góc này ở vị trí slt
\(\Rightarrow\)BC // AD
ABCD có AB // CD và AB = CD
\(\Rightarrow ABCD\)là hình bình hành (tứ giác có hai cạnh đối song song và bằng nhau)
\(\Rightarrow\)AD= BC và AD // BC (tính chất cạnh hình bình hánh