1. Cho nữa đường tròn , đường kính AB & C thuộc nửa đường tròn . Trên bán kính OC lấy điểm C sao cho OD=CH ( CH vuông góc AB, H thuộc AB) . Khi C chạy trên nửa đường tròn thì D chạy trên đường nào
Cho nửa đường tròn , đường kính AB và điểm M trên nữa đường tròn , kẻ MH vuông góc AB .Trên cung một nữa góc MBA bằng góc MAB , chứa M vẽ các nữa đường tròn , đường kính AH và BH .Tính diện tích giới hạn bởi ba nữa đường tròn .
Cho nữa đường tròn tâm O, đường kính AB. Trên nữa đường tròn lấy hai điểm C, D biết AC = CD = cm và BD = 6cm.Tính bán kính đường tròn
Cho nửa đường tròn , đường kính AB và điểm M trên nữa đường tròn , kẻ MH vuông góc AB .Trên cung một nữa góc MBA bằng góc MAB , chứa M vẽ các nữa đường tròn , đường kính AH và BH .Tính diện tích giới hạn bởi ba nữa đường tròn .
1. Cho nữa đường tròn (O), đường kính AB & C thuộc nửa đường tròn . Trên bán kính OC lấy điểm D sao cho OD=CH ( CH vuông góc AB, H thuộc AB) . Khi C chạy trên nửa đường tròn thì D chạy trên đường nào
cho nửa đường tròn tâm o đường kính ab=2r cho Ax bà by là2 tiếp truyến của nữa đường tròn (O) lần lượt tại A , B (Ax,by là nửa đường tròn thuộc cùng 1 mửa mặt phẳng bờ AB ) qua điểm M thupocj nữa đường tròn (M khác A và B) kẻ tiếp tuyến với nửa đường tròn nó cắt Ax và By theo thứ tự tại c và D a) chứng minh COD=90° b) chứng minh Ac.Bd=R²
a:
Xét (O) có
CM,CA là các tiếp tuyến
nên CM=CA và OC là phân giác của góc MOA(1)
mà OM=OA
nên OC là đường trung trực của MA
=>OC vuông góc với MA tại I
Xét (O) có
DM,DB là các tiếp tuyến
nên DM=DB và OD là phân giác của góc MOB(2)
mà OM=OB
nên OD là trung trực của BM
=>OD vuông góc với BM
Từ (1) và (2) suy ra góc COD=1/2*180=90 độ
b: AC*BD=MC*MD=MO^2=R^2
Cho nữa đường tròn tâm O đường kính AB. Từ 1 điểm M nằm ngoài trong nữa đường tròn [ M không thuộc AB ]. Kẻ đường thằng vuông góc với AB tại H [ H thuộc A,B,O ]. Kéo dài AM và BM cắt nữa đường tròn lần lượt tại C và D. Gọi N là giao điểm của AD và BC.
a.Chứng minh: D,M,C,N cùng thuộc 1 đường tròn
b.Chứng minh:M,N,H thằng hàng
c.Chứng minh:OD là tiếp tuyến của đường tròn đi qua D,M.C.N
a: gó ACB=1/2*180=90 độ
=>BC vuông góc MA
góc ADB=1/2*180=90 độ
=>AD vuông góc MB
góc MCN+góc MDN=180 độ
=>MCND nội tiếp
b: Xet ΔMAB có
AD,BC là đường cao
AD cắt CB tại N
=>N là trực tâm
=>M,N,H thẳng hàng
c: góc ODI=góc ODN+góc IDN
=góc IND+góc OAD
=góc OAD+góc HNA=90 độ
=>OD là tiếp tuyến của (I)
Cho nữa đường trong o, đường kính AB. C là một điểm thuộc đường tròn o. H là hình chiếu của C tre AB. Qua trung điểm của CH , vẽ đường vuông góc với OC cắt nữa đường tròn tại D và E . Chứng minh rằng AB là tiếp tuyến của đường tròn tâm C bán kính CD.
có cách này nè:
vẽ nữa (O) kia. vẽ đường kính COK.gọi giao điểm của EM vs CK là F. ta có: tam giác CEK nội tiếp (O), có CK là đường kính => tam giác CEK vuông tại E, có đường cao EF => = CF.CK(1)
ta có: tam giác CMF Đồng dạng với tam giác COH(g.g) => CM/ OC = CF/CH \(\Rightarrow\)CH/CK = CF/CH \(\Rightarrow\)CH2 = CK.CF (2) => từ (1);(2)=> CE=CH. mà ta dễ dàng c/m được CE=CD. vậy CH = CD, nên H thuộc (O;CD). mà CH vuông góc với AB. => dpcm
Cho nữa đường tròn (O) đường kính AB. C là 1 điểm nằm giữa O,A . Đường vuông góc với AB tại C cắt nữa đường tròn tại I. K là một điểm bất kì nằm trên đoạn CI ( K # C và I ) .Tia AK cắt nữa đường tròn (O) tại M . Tia BM cắt tia CI tại D a) Chứng minh các tứ giác ACMD,BCKM nội tiếp đường tròn b) CK.CD=CA.CB C) gọi N là giao điểm của AD với đường tròn (O) . Chứng minh B,K,L thẳng hàng d) tâm đường tròn ngoại tiếp ∆AKD nằm trên 1 đường thẳng cố định khi K di động trên đoạn CI
a: góc ACD=góc AMD=90 độ
=>ACMD nội tiếp
góc BMK+góc BCK=180 độ
=>BMKC nội tiếp
b: Xét ΔCAK vuông tại C và ΔCDB vuông tại C có
góc CAK=góc CDB
=>ΔCAK đồng dạng với ΔCDB
=>CA/CD=CK/BC
=>CA*CB=CD*CK
Bài 4: cho nữa đường tròn (O;R) đường kính AB. Trên nữa mặt phẳng bờ là đường thẳng AB chứa nữa đường tròn, kẻ tia Ax vuông góc với AB, trên đó lấy điểm C(C khác A). Kẻ tiếp tuyến CM tới đường tròn (M là tiếp điểm). Qua O kẻ đường thẳng vuông góc với OC cắt đường thẳng CM tại D.
chứng minh tứ giác AOMC nội tiếp. chứng minh BD là tiếp tuyến của đường tròn (O). OC cắt MA tại E, OD cắt MB tại F, Kẻ MH vuông góc AB (H thuộc AB). Chứng minh : HE2 = HF2 có giá trị không đổi khi C chuyển động trên tia Ax. chứng minh ba đường thẳng BC, EF, và MH đồng quy.