Cho nữa đường tròn tâm O , đường kính AB=2R , M là một điểm tùy ý trên nửa đường tròn ( M: ≠ A ; B) . Kẻ hai tia tiếp tuyến Ax và By với nửa đường tròn . Q ua M kẻ tiếp tuyến thứ ba lần lượt cắt Ax và By tại C và D.
a, Chứng minh : CD = AC +BD và góc COD = 90 độ .
b, Chứng minh : AC.BD=R^2 .
Anh em giúp mình với mai mình kiểm tra rồi nhé.
C, OC cắt AM tại E , OD cắt BM tại F . Chứng minh : EF = R.
Gọi C là điểm nằm trên nửa đường tròn tâm O, đường kính AB (C khác A, B). Trên nửa mặt phẳng bờ AB chứa nửa đường tròn, dựng tiếp tuyến Ax với nữa đường tròn. Tia BC cắt Ax tại I; tia phân giác góc IAC cắt nửa đường tròn tại E và cắt BC tại F; tia BE cắt AC tại K.
a) Chứng minh E, F, C, K cùng nằm trên một đường tròn
b) Chứng minh tam giác ABF cân.
c) Gọi G là trung điểm IA. Chứng minh GC là tiếp tuyến của nửa đường tròn O.
Em cần câu b, c ạ.
Cho nửa đường tròn tâm O đường kính AB. Từ điểm M trên tiếp tuyến Ax của nửa đường tròn vẽ tiếp tuyến thứ hai MC với nửa đường tròn. Kẻ CH vuông góc với AB, MB cắt nửa đường tròn (O) tại Q và cắt CH tại N. Chứng minh: a) MO vuông góc AC. b) \(MA^2\)=MQ.MB c) MO cắt AC tại I. Chứng minh: A, I, Q, M cùng thuộc một đường tròn. d) NC = NH.
Cho nửa đường tròn tâm O đường kính AB. Từ điểm M trên tiếp tuyến Ax của nửa đường tròn vẽ tiếp tuyến thứ hai MC với nửa đường tròn. Kẻ CH vuông góc với AB, MB cắt nửa đường tròn (O) tại Q và cắt CH tại N. Chứng minh: a) MO vuông góc AC. b) MA\(^2\)=MQ.MB c) MO cắt AC tại I. Chứng minh: A, I, Q, M cùng thuộc một đường tròn. d) NC = NH.
cho nửa đường tròn tâm o đường kính ab=2r cho Ax bà by là2 tiếp truyến của nữa đường tròn (O) lần lượt tại A , B (Ax,by là nửa đường tròn thuộc cùng 1 mửa mặt phẳng bờ AB ) qua điểm M thupocj nữa đường tròn (M khác A và B) kẻ tiếp tuyến với nửa đường tròn nó cắt Ax và By theo thứ tự tại c và D a) chứng minh COD=90° b) chứng minh Ac.Bd=R²
Bài 8. Cho nữa đường tròn tâm O, đường kính AB=2R. Từ A và B kẻ 2 tiếp tuyến Ax, By . Từ M bất kỳ trên nửa đường tròn kẻ tiếp tuyến thứ ba với nửa đường tròn đó, tiếp tuyến này cắt Ax tại C và cắt By tại D. a) Chứng minh: O, A, C, M cùng thuộc một đường tròn. b) Chứng minh: O, B, D. M cùng thuộc một đường tròn c) Chứng minh: CD=AC+BD. d) Chứng minh: ACOD vuông. e) Chứng minh: AC.BD không đổi khi M thay đổi trên nửa đường tròn (O).