a: Xét (I) có
ΔADH nội tiếp
AH là đường kính
Do đó: ΔADH vuông tại D
Xét (K) có
ΔHEB nội tiếp
HBlà đườg kính
=>ΔHEB vuông tại E
Xét (O) có
ΔMAB nội tiếp
AB là đường kính
=>ΔMAB vuông tại M
Xét tứ giác MDHE có
góc MDH=góc MEH=góc DME=90 độ
nên MDHE là hình chữ nhật
b: Xét ΔMHA vuông tại H có HD là đường cao
nên MD*MA=MH^2
Xét ΔMHB vuôg tại H có HElà đường cao
nên ME*MB=MH^2
=>ME*MB=MD*MA
c: góc EDI=góc EDH+góc IDH
=góc HMB+góc IHA
=góc HMB+góc HBM=90 độ
=>DE là tiếp tuyến của (I)
góc DEK=góc DEH+góc KEH
=góc AMH+góc KHE
=góc AMH+góc HAM=90 độ
=>DE là tiếp tuyến của (K)