3) Cho đa thức f(x)= ax’ + bx+c trong đó a,b,c là hệ số ; Biết
f(x+1)-f(x)=2x-3.
Tính giá trị của biểu thức : P=
f(5) - f(2)/9
Cho đa thức f(x) = ax2 = bx + c và f(3) = f(-3). Khi đó giá trị của hệ số b là:
Ta có f(3) = a.32 + 3b + c
= 9a + 3b + c
f(-3) = a.(-3)2 + (-3b) + c
= 9a - 3b + c
Lại có f(3) = f(-3)
=> 9a + 3b +c = 9a - 3b + c
=> 9a + 3b + c - (9a - 3b + c) = 0
<=> 6b = 0
<=> b =0
Vậy giá trị của hệ số b là 0
Cho đa thức f(x) = ax2 +bx + c. Trong đó a, b, c là các hệ số nguyên. Biết rằng f(x) chia hết cho 3 với mọi \(x\in Z\). Chứng minh a,b,c chia hết cho 3
Ta có : \(f\left(x\right)⋮3\) với \(\forall x\in Z\)
\(\Rightarrow f\left(0\right)=a.0^2+b.0+c=0+0+c=c⋮3\)
\(Do\) \(f\left(x\right)⋮3\) với \(\forall x\in Z\)
\(\Rightarrow f\left(1\right)=a.1^2+b.1+c=a+b+c⋮3\left(1\right)\)
\(f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c⋮3\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\left(a+b+c\right)-\left(a-b+c\right)=a+b+c-a+b-c=2b⋮3\)
Do 2 ko chia hết cho 3 \(\Rightarrow\) Để \(2b⋮3\) thì \(b⋮3\)
Ta lại có : \(a+b+c⋮3\)
mà \(b⋮3\) ; \(c⋮3\)
\(\Rightarrow\) Để tổng trên chia hết cho 3 thì a \(⋮3\)
Vậy a,b,c \(⋮3\)
Cho đa thức f(x) = ax2 + bx + c. Trong đó a,b,c là các hệ số nguyên. Biết rằng f(x) chia hết cho 3 với mọi \(x\in Z\). Chứng minh rằng a, b, c chia hết cho 3.
Lời giải:
Vì $f(x)$ chia hết cho $3$ với mọi \(x\in\mathbb{Z}\) nên ta có:
\(\left\{\begin{matrix} f(0)=c\vdots 3\\ f(1)=a+b+c\vdots 3 3\\ f(-1)=a-b+c\vdots 3\end{matrix}\right.\Rightarrow \left\{\begin{matrix} c\vdots 3\\ a+b\vdots 3(1)\\ a-b\vdots 3 (2) \end{matrix}\right.\)
Từ \((1),(2)\Rightarrow 2a\vdots 3\). Mà $2$ không chia hết cho $3$ nên $a$ chia hết cho $3$
Có $a+b$ chia hết cho $3$ và $a$ chia hết cho $3$ nên $b$ cũng chia hết cho $3$
Do đó ta có đpcm
1)cho f(x)=ax^3+bx^2+cx+d trong đó a,b,c,d thuộc Z và thỏa mãn b=3a+c.Chứng minh rằng f(1).f(-2) là bình phương của một số nguyên.
2)cho đa thức f(x)=ax^2+bx+c với a,b,c là hằng số.Hãy xác định a,b,c biết f(1)=4,f(-1)=8 và a-c=4
3)cho f(x)=ax^3+4x(x^2-1)+8;g(x)=x^3-4x(bx-1)+c-3.Xác định a,b,c để f(x)=g(x).
4)cho f(x)=cx^2+bx+a và g(x)=ax^2+bx+c.
cmr nếu Xo là nghiệm của f(x) thì 1/Xo là nghiệm của g(x)
5)cho đa thức f(x) thỏa mãn xf(x+2)=(x^2-9)f(x).cmr đa thức f(x) có ít nhất 3 nghiệm
6)tính f(2) biết f(x)+(x+1)f(-x)=x+2
a)xác định a để nghiệm của đa thức f x = ax - 4 Cũng là nghiệm của đa thức g(x) = x^2 trừ x = 2 .
b)cho f(x) = ax^3 = bx^2 = cx = d trong đó A,B,C,D là hàm số và thỏa mãn b + 3 a + c. chứng tỏ rằng F(1) = F (-2)
Cho đa thức F(x)=ax^2+bx+c(a,b,c là các hệ số nguyên) Chứng minh rằng nếu F(x) chia hêt cho 3 với mọi x thì các hệ số a,b,c cũng chia hết cho 3
xét x=o nên f(x) = c nên c chia hết cho 3
xét x=1 suy ra f(x) = a+b+c vì c chia hết cho 3 nên a+b chi hết cho 3 (1)
xét x =-1 suy ra f(x)=a-b+c chia hết cho 3 tương tự suy ra a-b chia hết cho 3 (2)
từ 1 và 2 suy ra a+b+a-b chia hết cho 3 nên 2a chia hết cho 3 mà (2,3)=1 nên a chia hết cho 3 nên b chia hết 3
Câu 1:Cho đa thức: Q=3x-0,5x^6-4x^5-x^3+ax^6+bx^5+6x^4+c-5
Tìm a, b, c biết Q(x) có bậc là 5,hệ số cao nhất là 3 và hệ số tự do là -2
Câu 2: Cho đa thức f(x) =ax^2+bx+c. Tìm a,b, c biết:
a) f(0)=2, f(1)=0 và f(-1)=6
b) Tính f(3)-2f(2) biết: f(1)=7, b và c là 2 số đối nhau.
Cần gấppppppp nheeeeee!!!!!! :3
cho đa thức : f(x)= ax^2+bx+c trong đó a;b;c là các số nguyên . Biết rằng giá trị của đa thức chia hết cho 3 với mọi số nguyên của x . CMR : a,b,c chia hết cho 3
a)xác định a để nghiệm của đa thức f x = ax - 4 Cũng là nghiệm của đa thức g(x) = x^2 trừ x = 2 .
b)cho f(x) = ax^3 = bx^2 = cx = d trong đó A,B,C,D là hàm số và thỏa mãn b + 3 a + c. chứng tỏ rằng F(1) = F (-2)