Cho hình chữ nhật ABCD. Qua A kẻ đường thẳng vuông góc với BD, cắt BD ở H. Biết rằng DH = 9cm; BH = 16cm. Chu vi hình chữ nhật ABCD bằng... cm.
Cho hình chữ nhật ABCD. Qua A kẻ đường thẳng vuông góc với BD, cắt BD ở H. Biết rằng DH = 9cm; BH = 16cm. Chu vi hình chữ nhật ABCD bằng cm.
CHo hình chữ nhật ABCD.Qua A kẻ đường thẳng vuông góc với BD,cắt BD ở H.Biết rằng DH=9cm,BH=16cm.Tính chu vi hình chữ nhật ABCD.
the hệ thức lượng trong tam giác vuông :
ah^2=dh.hb=9.16=144--->ah=12cm
suy ra được ad=15cm và ab=20cm
chu vi hcn là (15+20).2=70
cho hình chữ nhật abcd có ah vuông góc với bd. gọi i, m, k, n là TD của ah, dc, dh,hb. Biết BC=4, AB=6 . Qua I kẻ đường thẳng vuông góc với ab cắt bd ở k. a) tứ giác DINM là hình gì
Cho hình chữ nhật ABCD (AD <AB) . Hai đường chéo AC và BD cắt nhau tại O. Qua D kẻ đường thẳng vuông góc với BD cắt tia BC tại E .
a) Chứng minh tam giác BDE đồng dạng với tam giácDCE .
b) Kẻ CH vuông góc với DE tại H . Chứng minh rằng: 2 . DC CH DB = . Từ đó tính
độ dài CH biết AD = 6cm ; AB = 8cm.
c) Gọi K là giao điểm của OE và HC . Chứng minh:
HK /OD=EK/EO, từ đó suy ra: K là trung điểm của HC .
d) Chứng minh ba đường thẳng ,, OE. CD .BH đồng quy
a: Xét ΔBDE vuông tại D và ΔDCE vuông tại C có
góc E chung
=>ΔBDE đồng dạng với ΔDCE
b: BD=căn 8^2+6^2=10cm
BE=10^2/6=100/6=50/3cm
EC=DC^2/BC=8^2/6=32/3cm
Xét ΔEBD có CH//BD
nên CH/BD=EC/EB
=>CH/10=32/50=16/25
=>CH=160/25=6,4cm
Cho hình chữ nhật ABCD, qua A kẻ đường thẳng vuông góc với BD tại H. Biết AB=10cm, AH=6cm. Tính AD và diện tích hình chữ nhật ABCD.
BH=căn 10^2-6^2=8cm
=>BD=10^2/8=12,5cm
=>AD=7,5cm
S ABCD=7,5*10=75cm2
Cho hình chữ nhật ABCD có AD = 6cm; AB = 8cm; hai đường chéo AC và BD cắt nhau tại O. Qua D kẻ đường thẳng d vuông góc với BD, d cắt tia BC tại E.
a) Chứng minh rằng: ΔBDE đồng dạng với ΔDCE
b) Kẻ CH ⊥ DE tại H. Chứng minh rằng: DC2 = CH.DB
c) Gọi K là giao điểm của OE và HC. Chứng minh K là trung điểm của HC và tính tỉ số diện tích của ΔEHC và diện tích của ΔEDB
a/ Xét 2 tg vuông BDE và tg vuông DCE có
\(\widehat{DEB}\) chung
\(\widehat{DBE}=\widehat{CDE}\) (cùng phụ với \(\widehat{DEB}\) )
=> tg BDE đồng dạng với tg DCE (g.g.g)
b/ Xét tg vuông DCE có
\(DC^2=DH.DE\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu của cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
Xét tg vuông DHC và tg vuông BDE có
\(\widehat{DCH}=\widehat{DEB}\) (cùng phụ với \(\widehat{CDE}\) )
=> tg DHC đồng dạng với tg BDE
\(\Rightarrow\dfrac{DH}{DB}=\dfrac{CH}{DE}\Rightarrow DH.DE=CH.DB\)
\(\Rightarrow DC^2=CH.DB\)
c/
Ta có
\(BD\perp DE;CH\perp DE\) => CH//BD (cùng vuông góc với DE)
\(\Rightarrow\dfrac{KH}{OD}=\dfrac{KC}{OB}\) (talet) \(\Rightarrow\dfrac{KH}{KC}=\dfrac{OD}{OB}\)
Mà OD=OB (trong HCN hai đường chéo cắt nhau tại trung điểm mỗi đường)
\(\Rightarrow\dfrac{KH}{KC}=\dfrac{OD}{OB}=1\Rightarrow KH=KC\) => K là trung điểm của HC
Xét tg vuông BCD có
\(DB=\sqrt{BC^2+CD^2}=\sqrt{6^2+8^2}=10cm\)
Ta có
\(DC^2=CH.DB\Rightarrow CH=\dfrac{DC^2}{DB}=\dfrac{8^2}{10}=6,4cm\)
\(\dfrac{S_{EHC}}{S_{EDB}}=\dfrac{\dfrac{EH.CH}{2}}{\dfrac{ED.DB}{2}}=\dfrac{EH.CH}{ED.DB}=k\)
Ta có
CH//DB (cmt)\(\Rightarrow\dfrac{EH}{ED}=\dfrac{CH}{DB}\)
\(\Rightarrow k=\left(\dfrac{CH}{DB}\right)^2=\left(\dfrac{6,4}{10}\right)^2=\left(\dfrac{4}{5}\right)^4\)
Cho hình chữ nhật ABCD có AD = 6 cm, AB = 8 cm. Hai đường chéo AC và BD cắt nhau tại O. Qua D kẻ đường thẳng d vuông góc với BD, d cách tia BC tại E .
a) chứng minh rằng ∆BDE đồng dạng ∆DCE
b) kẻ CH vuông góc với DE tại H. Chứng minh rằng DC ²=CH.DB
c) K là giao điểm của OE và HC.Chứng minh K là trung điểm của HC và tính tỉ số diện tích của ∆EHC và diện tích ∆EDC
SOS!!!Mk đg cân gấp!!!mk làm đc câu ab r còn câu c thôi. Cảm ơn!
a: Xét ΔBDE vuông tại D và ΔDCE vuông tại C có
góc E chung
=>ΔBDE đồng dạng với ΔDCE
b: Xét ΔHDC vuông tại H và ΔDBE vuông tại D có
góc HDC=góc DBE
=>ΔHDC đồng dạng với ΔDBE
=>DH/DB=CH/DE
=>DH*DE=CB*CH=DC^2
c: DC^2=CH*DB
=>CH*10=8^2=64
=>CH=6,4cm
\(DH=\sqrt{8^2-6.4^2}=4.8\left(cm\right)\)
=>DE=8^2/4,8=40/3(cm)
=>CE=32/3(cm)
Xét ΔHCE vuông tại H và ΔCDE vuông tại C có
góc HEC chung
=>ΔHCE đồng dạng với ΔCDE
=>\(\dfrac{S_{HCE}}{S_{CDE}}=\left(\dfrac{CE}{DE}\right)^2=\left(\dfrac{32}{3}:\dfrac{40}{3}\right)^2=\left(\dfrac{4}{5}\right)^2=\dfrac{16}{25}\)
Bài 1 : Cho hình thang ABCD có độ dài đáy AB bằng 5cm, CD 15cm, đường chéo DB 12cm, AC 16cm. Từ A kẻ đường thẳng song song với BD cắt đường thẳng CD tại E
a. Cm tam giác AEC vuông
b. Tính diện tích hình thang ABCD
Bài 2 : Cho hình chữ nhật ABCD. Qua A kẻ đường thẳng vuông góc đường chéo BD tại H. Biết rằng AB bằng 20cm, AH bằng 12cm. Tính chu vi HCN ABCD