Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nameless
Xem chi tiết
Vương Thúy Phương
29 tháng 8 2020 lúc 11:10

ta có tam giác ADH vuông tại H
=> AH^2+HD^2=AD^2
=>HD^2=AD^2-AH^2
            =5^2-4^2
            =9
=>HD=3 cm
kẻ BK vuông góc với CD
=>ABKH là hình chữ nhật 
=>AH=BK=4cm 
tam giác BKC vuông tại K
=>BK^2+KC^2=BC^2
=>KC^2=BC^2-BK^2
            =80-16
           =64
=>KC=8 (cm)
lại có DH+HK+KC=20
=>HK=20-3-8=9 (cm)
=>AB+HK=9 cm
ta có chu vi hình thang ABCD là AB+BC+CD+DA=9+√80+20+5=34+√80(cm)
 

Khách vãng lai đã xóa
35 Thư
Xem chi tiết
Hải Đăng Nguyễn
15 tháng 11 2021 lúc 15:05

Chu vi hình thang cân là:

3+5+4+4=16(cm)

              Đ/S:...

i love Vietnam
15 tháng 11 2021 lúc 15:06

Vì ABCD là hình thang cân

=> AD = BC = 4cm

Chu vi hình thang cân ABCD là : 3+4+5+4=16 (cm)

Ray
15 tháng 11 2021 lúc 15:21

Giải

Chu vi hình thang cân là :

3 + 5 + 4 + 4 = 16 ( cm )

Đáp số : 16 cm

D.Khánh Đỗ
Xem chi tiết
Hien Nguyen
Xem chi tiết
Lin
Xem chi tiết

Kẻ BH//AD(H∈CD)BH//AD(H∈CD), kẻ BD

Ta có:

+) AB//CD (hình thang ABCD)

⇒B2ˆ=D1ˆ⇒B2^=D1^ ( 2 góc so le trong )

+) BH//AD (cách vẽ)

⇒D2ˆ=B1ˆ⇒D2^=B1^ ( 2 góc so le trong)

Xét ΔDABΔDAB và ΔBHDΔBHD, ta có:

B2ˆ=D1ˆ(cmt)B2^=D1^(cmt)

BD : chung

D2ˆ=B1ˆ(cmt)D2^=B1^(cmt)

⇒⇒ ΔDABΔDAB = ΔBHDΔBHD (gcg)

⇒AD=BH⇒AD=BH

mà AD=3cm(gt)AD=3cm(gt)

⇒BH=3cm⇒BH=3cm

+) ΔDABΔDAB = ΔBHDΔBHD (cmt)

⇒AB=DH⇒AB=DH

mà AB=4cm(gt)AB=4cm(gt)

⇒DH=4cm⇒DH=4cm

+) DH+HC=DC(H∈DC)DH+HC=DC(H∈DC)

⇒4+HC=8⇒4+HC=8

⇒HC=4cm⇒HC=4cm

Xét ΔBHC,ΔBHC, ta có:

52=32+4252=32+42

⇒BC2=BH2+HC2⇒BC2=BH2+HC2 (Định lý Py-ta-go)

⇒ΔBHC⇒ΔBHC vuông tại H

⇒H1ˆ=900⇒H1^=900

+) AD//BH

⇒ADHˆ=H1ˆ⇒ADH^=H1^ (2 góc động vị)

⇒ADHˆ=900⇒ADH^=900

⇒⇒ Hình thang ABCD là hình thang vuông

Khách vãng lai đã xóa

Bạn ơi 900 là 90 độ nha

Khách vãng lai đã xóa
Inuyashi
3 tháng 4 2020 lúc 18:22

900 nha!!!

Khách vãng lai đã xóa
Phạm Mai Trang
Xem chi tiết
Phạm Mai Trang
Xem chi tiết
Phạm Mai Trang
Xem chi tiết
Phan Lê Kim Chi
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 3 2017 lúc 13:17

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Phân tích: Giả sử hình thang ABCD dựng được thỏa mãn điều kiện bài toán. Tam giác ADC dựng được vì biết ba cạnh AD = 2cm, CD = 4cm, AC= 3,5cm. Điểm B thỏa mãn 2 điều kiện:

- B nằm trên đường thẳng đi qua A và song song với CD.

- B cách D một khoảng bằng 3,5cm( vì ABCD là hình thang cân nên hai đường chéo bằng nhau).

Cách dựng:

- Dựng ∆ ADC biết:

AD = 2cm, AC = 3,5cm, CD = 4cm.

- Dựng tia Ax // CD. Ax nằm trong nửa mặt phẳng bờ AD chứa điểm C.

- Dựng cung tròn tâm D bán kính 3,5cm. Cung này cắt Ax tại B. Nối CB, ta có hình thang ABCD cần dựng.

Chứng minh:

Tứ giác ABCD là hình thang vì AB //CD.

AC = BD = 3,5cm

Vậy hình thang ABCD là hình thang cân.

Hình thang cân ABCD có: AD = 2cm, CD = 4cm, AC = 3,5cm thỏa mãn yêu cầu bài toán.

Biện luận: Tam giác ADC luôn dựng được nên hình thang ABCD luôn dựng được. Cung tròn tâm D bán kính 3,5cm cắt Ax tại 1 điểm nên ta dựng được một hình thang thỏa mãn yêu cầu bài toán.