Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Dựng hình thang cân ABCD có AB // CD, biết AD = 2cm, CD = 4cm, AC = 3,5cm

Cao Minh Tâm
1 tháng 3 2017 lúc 13:17

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Phân tích: Giả sử hình thang ABCD dựng được thỏa mãn điều kiện bài toán. Tam giác ADC dựng được vì biết ba cạnh AD = 2cm, CD = 4cm, AC= 3,5cm. Điểm B thỏa mãn 2 điều kiện:

- B nằm trên đường thẳng đi qua A và song song với CD.

- B cách D một khoảng bằng 3,5cm( vì ABCD là hình thang cân nên hai đường chéo bằng nhau).

Cách dựng:

- Dựng ∆ ADC biết:

AD = 2cm, AC = 3,5cm, CD = 4cm.

- Dựng tia Ax // CD. Ax nằm trong nửa mặt phẳng bờ AD chứa điểm C.

- Dựng cung tròn tâm D bán kính 3,5cm. Cung này cắt Ax tại B. Nối CB, ta có hình thang ABCD cần dựng.

Chứng minh:

Tứ giác ABCD là hình thang vì AB //CD.

AC = BD = 3,5cm

Vậy hình thang ABCD là hình thang cân.

Hình thang cân ABCD có: AD = 2cm, CD = 4cm, AC = 3,5cm thỏa mãn yêu cầu bài toán.

Biện luận: Tam giác ADC luôn dựng được nên hình thang ABCD luôn dựng được. Cung tròn tâm D bán kính 3,5cm cắt Ax tại 1 điểm nên ta dựng được một hình thang thỏa mãn yêu cầu bài toán.


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Bảo Thiii
Xem chi tiết
Bảo Thiii
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Trần Tuyết Như
Xem chi tiết
Bùng nổ Saiya
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Trần Vũ Duy
Xem chi tiết