Cho tam giác ABC có góc A = 200 , AB = AC = b; BC =a. Chứng minh hệ thức a3 + b3 = 3 ab2
1) Cho tam giác ABC vuông tại A có góc B = 60độ, AC = 3cm. Tính BC, AB
2) Cho tam giác ABC vuông tại A có BC = 10cm, góc C = 3cm. Tính góc B, AB, AC
3) Cho tam giác ABC vuông tại A có AB = 4cm, góc B = 50 độ. Tính BC, góc C, AC
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)
Bài 7: a, Cho tam giác ABC vuông tại A có AB 3 AC 4 = và BC = 5. Tính độ dài AB, AC b, Tính độ dài cạnh huyền biết độ dài hai cạnh góc vuông là 6 và 7 c, Tính góc ở đỉnh của tam giác cân biết số đo góc ở đáy là 200 d, Tính số đo góc ở đáy tam giác cân biết số đo góc ở đỉnh là 600
b: Độ dài cạnh huyền là \(\sqrt{6^2+7^2}=\sqrt{85}\left(cm\right)\)
c: Số đo góc ở đỉnh là:
\(180-2\cdot20^0=140^0\)
d: Số đó góc ở đáy là:
\(\dfrac{180^0-60^0}{2}=60^0\)
Bài 2 : Cho tam giác ABC có AB=3cm; AC= 4cm; BC= 5cm . So sánh các góc của tam giác ABC
Bài 3 :Cho tam giác ABC có góc B=60 độ ; góc C = 40 độ . So sánh các cạnh của tam giác ABC
Bài 4 : Cho tam giác ABC có AB=5cm ; AC= 12 cm ; BC=13 cm
a) Tam giác ABC là tam giác gì ?
b) So sánh các góc của tam giác ABC
Bài 5 : Cho tam giác ABC vuông tại A có AB=10cm ; AC= 24 cm
a) Tính độ dài cạnh BC=?
b) Tam giác ABC là tam giác gì ?
bài 2:
ta có: AB<AC<BC(Vì 3cm<4cm<5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
bài 2:
ta có: AB <AC <BC (Vì 3cm <4cm <5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
HT mik làm giống bạn Dương Mạnh Quyết
ta có: AB<AC<BC(Vì 3cm<4cm<5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
Bài 1: Cho tam giác ABC vuông tại A giải Tam giác ABC biết: a) Góc B= 35 độ, BC=40 cm
b) AB=70cm, AC=60cm
c) AB=6cm, góc B=60 độ
d) AB=5cm, AC=7cm
2) Cho tam giác ABC góc A =90 độ đường cao AH biết HB=25cm, HC =64cm tín số đo góc B và C
3)Tam giác ABC có góc A =90 độ, AB=21cm, ggos C =40 độ tính độ dài đường phân giác BD
4) Tam giác ABC có góc B=70 độ góc C=35 độ đường cao AH=5cm tính độ dài AB,AC,B
1/ So sánh: 9200 và 25650
2/ Cho tam giác ABC có AB=AC. Kẻ BD vuông góc với AC và CE vuông góc với AB(D thuộc AC, B thuộc AB).Gọi O là giao điểm của BD và CE. CMR:
a) BD=CE
b) tam giác OEB= tam giác ODC
c)AO là phân giác của góc BAC
2/
a/ Vì AB = AC nên tam giác ABC cân tại A
=> \(\widehat{ABC}\)= \(\widehat{ACB}\)
Xét tam giác BEC và CDB: \(\widehat{ABC}\)=\(\widehat{ACB}\) và BC chung
=>> 2 tam giác bằng nhau (ch_gn)
=> BD = CE
b/ Xét tam giác OEB va ODC:
\(\widehat{OEB}\) = \(\widehat{ODC}\) = 90
\(\widehat{EOB}\)= \(\widehat{DOC}\) ( vì 2 góc đối đỉnh)
EB = DC (vi tam giác BEC = tg CDB)
=>> Tam giác OEB = tg ODC
c/ gọi I là trung điểm của BC => BI = IC
Ta có: \(\widehat{DBC}\) = \(\widehat{ECB}\) (vì tg BEC = tg CDB)
BI = IC (cmt)
OI là cạnh chung
=>> tg OIB = tg OIC ( c-g-c)
=>\(\widehat{BOI}\) = \(\widehat{COI}\)=> OI là phân giác của \(\widehat{BOC}\) (1)
Vì tam giác ABC cân tại A nên AI là phân giác của \(\widehat{BAC}\)(2)
Từ (1) vả (2) => AO là phân giác của \(\widehat{BAC}\)
Câu 1.
9200 =(94)50=656150
Ta có:256<6561 => 25650<656150=>25650<9200
Vậy 9200>25650
Câu 2.
a) Ta có: BD vuông góc với AC
=> Góc BDC =90 độ
Ta có: CE vuông góc với AB
=> Góc BEC =90độ
Xét tam giác ABC có:
+> AB=AC
=> Tam giác ABC cân tại A
=> Góc ABC = góc ACB
hay góc EBC= góc DCB
Xét tam giác EBC và tam giác DCB ta có:
+> Góc BEC= góc DCB (=90độ)
+>Chung cạnh BC
+>Góc EBC= góc DCB (cmt)
=> Tam giác EBC= tam giác DCB (ch-gn)
=> BD=CE (2 cạnh tương ứng)
=> ĐPCM
b)
Ta có: Tam giác EBC= tam giác DCB (cmt)
=>Góc DBC=góc ECB (2 góc tương ứng) và DC=EB (2 cạnh tương ứng)
Ta có: góc ABD +góc DBC=góc ABC
=> góc ABD=góc ABC-góc DBC
Ta có:góc ACE +góc ECB= góc ACB
=> góc ACE=góc ACB-góc ECB
Mà góc ABC=góc ACB; góc DBC=góc ECB
=> góc ABD=góc ACE
hay góc EBO=góc DCO
Xét tam giác OEB và tam giác ODC ta có:
+> Góc OEB=góc ODC (=90độ)
+> EB=DC (cmt)
+> Góc EBO=góc DCO (cmt)
=> Tam giác OEB= tam giác ODC (g-c-g)
=>ĐPCM
c)Ta có: tam giác OEB=tam giác ODC (cmt)
=> OB=OC (2 cạnh tương ứng)
Xét tam giác ABO và tam giác ACO ta có:
+> AB=AC (gt)
+>Chung cạnh AO
+> OB=OC (cmt)
=> tam giác ABO= tam giác ACO (c-c-c)
=> góc BAO=góc CAO (2 góc tương ứng)
=> OA là p/g của góc BAC
=> ĐPCM
cho tam giác abc có góc a = 60 độ góc c < góc B < 90 độ
a, cm ab<ac
b cm trên cạnh ac lấy điểm m sao cho am = ab .Chứng minh tam giác abm là tam giác đều
c, so sánh các cạnh của tam giác abc
a: góc C<góc B
=>AB<AC
b: Xét ΔABM co AB=AM và góc A=60 độ
nên ΔAMB đều
Chọn câu đúng nhất.1 .Cho ∆ ABC vuông cân tại A. vậy góc B bằng:A. 600B. 900C. 450D. 12002. Một tam giác là vuông nếu độ dài 3 cạnh của nó là:A. 2,3,4 B. 3,4,5 C. 4,5,6 D. 6,7,83. Một tam giác cân có góc ở đáy là 350 thì góc ở đỉnh có số đo là:A. 1000B. 1100C. 850D. 12004. Tam giác ABC có BC = 3cm ; AC = 5cm ; AB = 4cm. Tam giác ABC vuông tại đâu?A. Tại B B. Tại C C. Tại A D. Không phải là tam giác vuông5. Tam giác ABC có AB = AC = BC thì tam giác ABC là A. Tam giác nhọn B. Tam giác cân C. Tam giác vuông D. Tam giác đều6. Tam giác nào vuông nếu độ lớn ba góc kà:A. 300, 700, 800B. 200, 700, 900 C. 650, 450, 700D. 600, 600, 6007. Tam giác cân là tam giác có:A. Hai cạnh bằng nhau -B. Ba cạnh bằng nhau - C. Một góc bằng 600 - D. Một góc bằng 900
Bài 1: cho tam giác ABC có góc B=góc C
CMR: AB=AC
Bài 2 : Cho tam giác ABC có AB=AC; góc A= 60 độ
CMR: AB=AC=BC
Helpp mee -_-
BÀI 1 : Ta có tam giác ABC có góc B=góc C=>tam giác ABC cân tại A =>AB=AC
BÀI 2:TA có:tam giác ABC có AB=AC=>Tam giác ABC cân tại A mak koa góc A = 6O độ =>tam giác ABC đều=>AB=AC=BC
TICK NHA, MK GIẢI CHI TIẾT LẮM RÙI ĐÓ
Bài 17. Cho tam giác ABC (AB=AC) có góc ở đỉnh bằng 200; cạnh đáy là a ; cạnh bên là b . Chứng minh rằng a3 + b3 = 3ab2
đề hơi sai chỉnh lại nha mọi ngừi Bài 17. Cho tam giác ABC (AB=AC) có góc ở đỉnh bằng 20 độ; cạnh đáy là a ; cạnh bên là b . Chứng minh rằng a3 + b3 = 3ab2