Cho tam giác ABC cân tại A có M là trung điểm biết BC biết AB = 3,4 cm. Tính cạnh đáy của tam giác ABC
Cho tam giác ABC cân tại A . Vẽ AH vuông góc với BC (H thuộc BC).
a. CM: tam giác ABH= tam giác ACH và H là trung điểm BC
b.cho biết AC = 13 cm; AH = 12 cm. Tính BC
c. Gọi M là trung điểm của AB. Đường thẳng vuông góc với AB tại M cắt AH tại E . CMR: tam giác AEB cân .
d. Trên cạnh AB; AC lần lượt lấy các điểm D ; F sao cho BD = AF . CM : EF< DF/2
a: Xét ΔNAB có
NM vừa là đường cao, vừa là trung tuyến
nên ΔBAN cân tại N
b: Xét ΔBAC có
M là trung điểm của BA
MN//AC
Do đó: N là trung điểm của BC
Cho tam giác ABC cân tại A (góc A nhọn) , đường cao AH cắt tia phân giác BD tại điểm I. Gọi M là hình chiếu của điểm H trên cạnh AC, K là trung điểm của HM. Biết AI = 5 cm, HI = 4 cm. Tính độ dài cạnh BC.
Áp dụng định lý phân giác cho tam giác ABH:
\(\dfrac{BH}{IH}=\dfrac{AB}{AI}\Rightarrow\dfrac{BH}{4}=\dfrac{AB}{5}\) \(\Rightarrow AB=\dfrac{5BH}{4}\)
Áp dụng định lý Pitago cho tam giác ABH:
\(AB^2=BH^2+AH^2\)
\(\Leftrightarrow\left(\dfrac{5BH}{4}\right)^2=BH^2+9^2\)
\(\Rightarrow BH^2=144\Rightarrow BH=12\)
\(\Rightarrow BC=24\)
Cho tam giác ABC cân tại A. Điểm H là trung điểm của cạnh BC.
a) CM tam giác AHB = tam giác AHC. CM AH vuông góc với BC.
b) Kẻ HM vuông góc với AB tại M, kẻ HN vuông góc với AC tại N. CM tam giác AHM = tam giác AHN.
c) Gọi I là giao điểm của MH và AC, gọi K là giao điểm của NH và AB. CM tam giác AIK là tam giác cân.
a) Xét \(\Delta AHB\)và\(\Delta AHC\)có :
\(\hept{\begin{cases}HB=HC\\AH\\AB=AC\end{cases}}\)( Bạn tự ghi lời giải thích nha)
\(\Rightarrow\Delta AHB=\Delta AHC\left(c.c.c\right)\)
\(\Rightarrow\widehat{AHB}=\widehat{AHC}\)(2 cạnh tương ứng)
Mà \(\widehat{AHB}+\widehat{AHC}=180^o\)( 2 góc kề bù )
\(\Rightarrow\widehat{AHB}=\widehat{AHC}=\frac{180^o}{2}=90^o\)
\(\Rightarrow AH\perp BC\)
b) Xét \(\Delta AHM\left(\widehat{AMH}=90^o\right)\)và \(\Delta AHN\left(\widehat{ANH}=90^o\right)\)có :
\(\hept{\begin{cases}AH\\\widehat{A_1}=\widehat{A_2}\end{cases}}\)( bạn tự nêu lí do )
\(\Rightarrow\Delta AHM=\Delta AHN\)( Cạnh huyền - góc nhọn )
Cho tam giác ABC cân tại A. Gọi M là trung điểm của BC. Biết AB = 13, AM = 12. Tính độ dài cạnh BC
Lời giải:
Xét tam giác $ABM$ và $ACM$ có:
$AB=AC$ (do $ABC$ cân tại $A$)
$AM$ chung
$BM=CM$ (do $M$ là trung điểm $BC$)
$\Rightarrow \triangle ABM=\triangle ACM$ (c.c.c)
$\Rightarrow \widehat{AMB}=\widehat{AMC}$
Mà $\widehat{AMB}+\widehat{AMC}=180^0$ nên $\widehat{AMB}=\widehat{AMC}+90^0$
$\Rightarrow AM\perp BC$
Xét tam giác $ABM$ vuông tại $M$, áp dụng định lý Pitago:
$BM=\sqrt{AB^2-AM^2}=\sqrt{13^2-12^2}=5$
$BC=2BM=2.5=10$
Cho tam giác ABC cân tại A có ah là đường cao Gọi M và N lần lượt là trung điểm của hai cạnh AB và AC biết ah = 8 cm và BC = 4 cm Tính diện tích ABC và độ dài cạnh M N E là điểm đối xứng h qua m ơ Chứng minh tứ giác hbe là hình chữ nhật gọi F là điểm đối xứng a qua h Chứng minh tứ giác AB AC là hình thoi cho biết HK vuông góc FC tại A I là trung điểm HK chứng minh rằng đừng pk vuông góc với EF
a: \(S_{ABC}=\dfrac{1}{2}\cdot8\cdot4=16\left(cm^2\right)\)
b: Xét tứ giác AHBE có
M là trung điểm chung của AB và HE
góc AHB=90 độ
=>AHBE là hình chữ nhật
c: Xét tứ giác ABFC có
H là trung điểm chung của AF và BC
AB=AC
=>ABFC là hình thoi
Cho tam giác ABC cân tại A. Gọi M ,N lần lượt là trung điểm của AD, BC biết AB bằng 5 cm AC bằng 12 cm Tính MN, AN?????
cho tam giá ABC vuông tại A Gọi N là trung điểm của AC. Đường trung trực của Ac cắt cạnh BC tại M
a)Cm tam giác AMC cân tại M
b)Cm tam giác MAB cân tại M
_Giải _
a) C/m t/g AMC cân tại M
* Xét t/g AMN và t/g CMN :
- AN = CN ( N là trung điểm )
- Góc ANM = CNM ( = 900 do MN là trung trực đoạn AC )
- MN chung
=> T/g AMN = T/g CMN
=> MA = MC
=> T/g AMC cân tại M
b ) Em hông biết làm .. T.T Thông cẻm nhe :)))))