cho A =\(\frac{10^8+2}{10^8-1}\) ; B = \(\frac{10^8}{10^8-3}\) . So sánh A và B. Nhanh lên nhé, tớ đang vội, 23h tớ phải nộp bài rồi.
Cho \(A=\frac{10^8+2}{10^8-1};B=\frac{10^8}{10^8-3}\)so sánh A với B
so sánh
a, \(a=\frac{10^{11}-1}{10^{12}-1}\&b=\frac{10^{10}+1}{10^{11}+1}\)
b,\(a=\frac{10^8+2}{10^8-1}\&b=\frac{10^8}{10^3-3}\)
So sánh:
a, A= \(\frac{10^8+2}{10^8-1}\) ; B= \(\frac{10^8}{10^8-3}\)
b, A= \(\frac{8^{10}+1}{8^{10}-1}\) ; B=\(\frac{8^{10}-1}{8^{10}-3}\)
c, A= \(\frac{100^9+4}{100^9-1}\): B= \(\frac{100^9+1}{100^9-4}\)
mk giải cho câu A rồi tự suy mấy câu khác nhé!
ta có : A = 10^8 + 2/10^8 - 1
=> A = 10^8 - 1 + 3/10^8 - 1
=> A = 1+ 3/10^8 - 1
B = 10^8/10^8 - 3
=> B = 10^8 - 3 + 3/10^8 - 3
=> B = 1+ 3/10^8 - 3
vì 3/10^8 - 1 < 3/10^8 - 3
=> 1 + 3/10^8 - 1 < 1 + 3/10^8 - 3
=> A < B
vậy A < B
cách này cô dạy mk đó
bài 1 So sánh
a)\(A=\frac{3}{8^3}+\frac{7}{8^4}\) ; \(B=\frac{7}{8^3}+\frac{3}{8^4}\)
b)\(A=\frac{10^{1992}+1}{10^{1991}+1};B=\frac{10^{1993}+1}{10^{1992}+1}\)
c)\(A=\frac{10^7+5}{10^4-8};B=\frac{10^8+6}{10^8-7}\)
d)\(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8};B=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}\)
e)\(A=\frac{2011}{2012}+\frac{2012}{2013};B=\frac{2011+2012}{2012+2013}\)
so sánh \(A=\frac{10^2+2}{10^8-1};B=\frac{10^8}{10^8-3}\)
So sánh \(A=\frac{10^8+2}{10^8-1}\)\(B=\frac{10^8}{10^8-3}\)
\(A=\frac{10^8+2}{10^8-1}=\frac{\left(10^8-1\right)+3}{10^8-1}=\frac{10^8-1}{10^8-1}+\frac{3}{10^8-1}=1+\frac{3}{10^8-1}\)
\(B=\frac{10^8}{10^8-3}=\frac{\left(10^8-3\right)+3}{10^8-3}=\frac{10^8-3}{10^8-3}+\frac{3}{10^8-3}=1+\frac{3}{10^8-3}\)
Vì \(1+\frac{3}{10^8-1}<1+\frac{3}{10^8-3}\) nên A < B
Ta có :
A = 108 + 2 / 10 8 - 1 = 1 + 3 / 10 8 - 1
B = 108 / 10 8 - 3 = 1 + 3 / 108 - 3
Vì 3/ 108 - 1 < 3 / 108 - 3=> A < B
A = \(\dfrac{10^8+2}{10^8-1}\) = \(\dfrac{\left(10^8-1\right)+3}{10^8-1}\) = \(\dfrac{10^8-1}{10^8-1}\) + \(\dfrac{3}{10^8-1}\) = 1+ \(\dfrac{3}{10^8-1}\)
B = \(\dfrac{10^8}{10^8-3}\) = \(\dfrac{\left(10^8-3\right)+3}{10^8-3}\) = \(\dfrac{10^8-3}{10^8-3}\) +\(\dfrac{3}{10^8-3}\)= 1+ \(\dfrac{3}{10^8-3}\)
Vì 1 +\(\dfrac{3}{10^8-1}\) < 1 + \(\dfrac{3}{10^8-3}\) nên A < B
\(\dfrac{3}{10^8-3}\)\(\dfrac{3}{10^8-3}\)
Bài 1:Tìm x biết Bài 2:So sánh
a, \(x+\frac{1}{2}=\frac{3}{8}.\frac{4}{5}\) a, \(A=\frac{10^{10}-1}{10^{11}-1}vaB=\frac{10^9-1}{10^{10}-1}\)
b, \(\frac{5}{16}:x-\frac{1}{4}=\frac{5}{8}\) b, B =\(\frac{10^{10}}{10^{10}+1}vaB=\frac{10^{10}+1}{10^{10}+2}\)
c, \(\frac{-1}{4}.x+\frac{3}{7}.x=2\)
d, \(\frac{22}{9}-\left(x+\frac{1}{2}\right)^2=\frac{7}{3}\)
e, \(\left|\frac{1}{4}-x\right|+5\frac{1}{8}=6\frac{1}{8}\)
A=\(\frac{10^8+2}{10^8-1}\) B=\(\frac{10^8}{10^8-3}\)
So sánh \(A=\frac{10^8+2}{10^8+1};B=\frac{10^8}{10^8-3}\)
\(A=\frac{10^8+2}{10^8+1}=1+\frac{1}{10^8+1}
\(10^8=a\)
\(A-B=\frac{a+2}{a+1}-\frac{a}{a-3}=\frac{\left(a+2\right)\left(a-3\right)-a\left(a+1\right)}{\left(a+1\right)\left(a-3\right)}=\frac{-2a-6}{\left(a+1\right)\left(a-3\right)}