\(A=\frac{10^8+2}{10^8-1}=\frac{\left(10^8-1\right)+3}{10^8-1}=\frac{10^8-1}{10^8-1}+\frac{3}{10^8-1}=1+\frac{3}{10^8-1}\)
\(B=\frac{10^8}{10^8-3}=\frac{\left(10^8-3\right)+3}{10^8-3}=\frac{10^8-3}{10^8-3}+\frac{3}{10^8-3}=1+\frac{3}{10^8-3}\)
Vì \(1+\frac{3}{10^8-1}<1+\frac{3}{10^8-3}\) nên A < B
Ta có :
A = 108 + 2 / 10 8 - 1 = 1 + 3 / 10 8 - 1
B = 108 / 10 8 - 3 = 1 + 3 / 108 - 3
Vì 3/ 108 - 1 < 3 / 108 - 3=> A < B
A = \(\dfrac{10^8+2}{10^8-1}\) = \(\dfrac{\left(10^8-1\right)+3}{10^8-1}\) = \(\dfrac{10^8-1}{10^8-1}\) + \(\dfrac{3}{10^8-1}\) = 1+ \(\dfrac{3}{10^8-1}\)
B = \(\dfrac{10^8}{10^8-3}\) = \(\dfrac{\left(10^8-3\right)+3}{10^8-3}\) = \(\dfrac{10^8-3}{10^8-3}\) +\(\dfrac{3}{10^8-3}\)= 1+ \(\dfrac{3}{10^8-3}\)
Vì 1 +\(\dfrac{3}{10^8-1}\) < 1 + \(\dfrac{3}{10^8-3}\) nên A < B
\(\dfrac{3}{10^8-3}\)\(\dfrac{3}{10^8-3}\)