Cho A(x)=x^2-(3m+3)x+m^2; B(x)=x^3+(5m-7)x+m^2. Tìm m để A(-1)=B(2)
Bài 1: Giải và biện luận các phương trình sau:
a) m(m-x)= 3(x+3)-6m
b) mx-3m=2x-3
c) (m^2 -9)x=m^2 +3m
Bài 2: Giải và biện luận các phương trình sau:
a) m(m-1)=2(2x+1)
b) (m^2 - 9)x=m^2 +3m
c) m(m-1)= 2(4-x)
d) (m^2 -3m+2)x= m-2
Các cậu giúp tớ với ạ, không cần làm hết đâu ạ, mng biết câu nào thì làm hộ tớ với nhé, plss!
Vì hai bài giống nhau nên anh sẽ làm mẫu bài 1 nhé.
cho y=x2-2(m+1)x+3m
a) Tìm m để x2-2(m+1)+3m>2 với mọi m>3
b) Tìm m để pt x2-2(m+1)+3m=0 có nghiệm \(\varepsilon\)(-1;1)
1.Giải phương trình sau: (x+1) (x+2) = (2-x) (x+2)
2.Tìm các giá trị của m sao cho mỗi biểu thức sau có giá trị bằng 5
a, 2(m+3/5) - (m+13/5)
b, 2(3m+1)+1/4 - 2(3m-1)/5+3m+2/10
(x + 1)(x + 2) = (2 - x)(x + 2)
<=> x2 + 2x + x + 2 = 4 - x2
<=> x2 + 3x + 2 = 4 - x2
<=> x2 + 3x + 2 - 4 + x2 = 0
<=> 2x2 + 3x - 2 = 0
<=> 2x2 + 4x - x - 2 = 0
<=> 2x(x + 2) - (x + 2) = 0
<=> (x + 2)(2x - 1) = 0
<=> x + 2 = 0 hoặc 2x - 1 = 0
<=> x = -2 hoặc x = 1/2
còn bài 2 nữa bạn
ư ư :<
a) 2(m + 3/5) - (m + 13/5) = 5
<=> 2m + 6/5 - m - 13/5 = 5
<=> m - 7/5 = 5
<=> m = 5 + 7/5
<=> m = 32/5
b) \(\frac{2\left(3m+1\right)+1}{5}-\frac{2\left(3m-1\right)}{5}+\frac{3m+1}{10}=5\)
<=> 15(2m + 1) - 8(3m - 1) + 3(3m + 2) = 100
<=> 30m + 15 - 24m + 1 + 9m + 6 = 100
<=> 12m + 27 = 100
<=> 12m = 100 - 27
<=> 12m = 73
<=> m = 73/12
Cho A(x)=x^2-(3m+3).x+m^2
B(x)=x^2+(5m-7).x+m^2
Tìm m biếtA(-1)=B(2)
1) {x^2+2x^2=3 {2x^2+3x^2=5 2) giải theo m {x+y=2m+1 {x-y=1 3)giải theo m {x +2y=3m+2 {2x+y=3m+2 4) cho hệ. {x+3y=4m+4 {2x+y=3m+3 Tìm m để hệ có nghiệm (x,y) thỏa mãn x+y=4 HỆ PHƯƠNG TRÌNH HẾT Ạ Giúp mik với nhé
4:
x+3y=4m+4 và 2x+y=3m+3
=>2x+6y=8m+8 và 2x+y=3m+3
=>5y=5m+5 và x+3y=4m+4
=>y=m+1 và x=4m+4-3m-3=m+1
x+y=4
=>m+1+m+1=4
=>2m+2=4
=>2m=2
=>m=1
3:
x+2y=3m+2 và 2x+y=3m+2
=>2x+4y=6m+4 và 2x+y=3m+2
=>3y=3m+2 và x+2y=3m+2
=>y=m+2/3 và x=3m+2-2m-4/3=m+2/3
Cho phương trình : \(^{x^2-2\left(m-2\right)x+m^2-3m+5=0}\)
a) giải phương trình với m=3
a) Thay m=3 vào phương trình, ta được:
\(x^2-2x+3^2-3\cdot3+5=0\)
\(\Leftrightarrow x^2-2x+5=0\)
\(\Leftrightarrow x^2-2x+1+4=0\)
\(\Leftrightarrow\left(x-1\right)^2+4=0\)(vô lý)
Vậy: Khi m=3 thì phương trình vô nghiệm
Cho A(x)= \(x^2-\left(3m+3\right)x+m^2\), B(x) = \(x^3+\left(5m-7\right)x+m^2\)
Tìm m để A(-1)=B(2)
=> A(-1) = (-1)2 - (3m + 3).(-1) + m2 = 1 + 3m + 3 + m2 = 3m + 4 + m2
=> B(2) = 23 + (5m - 7).2 + m2 = 8 + 10m - 14 + m2 = -6 + 10m + m2
Để A(-1) = B(2)
=> A(-1) - B(2) = 3m + 4 + m2 + 6 - 10m - m2 = 0
=> -7m + 10 = 0
=> -7m = -10
=> m = 10/7
Vậy ....
1.Giải phương trình sau: (x+1) (x+2) = (2-x) (x+2)
2.Tìm các giá trị của m sao cho mỗi biểu thức sau có giá trị bằng 5
a, 2(m+3/5) - (m+13/5)
b, 2(3m+1)+1/4 - 2(3m-1)/5+3m+2/10
1. Xét x = - 2, thay vào pt ta dc: -1.0 = 4.0 (Hợp lí)
Vậy x = -2 là 1 nghiệm của pt
Xét x \(\ne\)- 2, ta có: x + 1 = 2 - x
<=> 2x = 1 <=> x = 1/2
Vậy S = {1/2; -2}
2. a. \(2\left(m+\frac{3}{5}\right)-\left(m+\frac{13}{5}\right)=5\)
<=> \(2m+\frac{6}{5}-m-\frac{13}{5}=5\)
<=> m = \(\frac{32}{5}\)
b. \(2\left(3m+1\right)+\frac{1}{4}-\frac{2\left(3m-1\right)}{5}+3m+\frac{1}{5}=5\)
<=> \(6m+2+\frac{1}{4}-\frac{6m-2}{5}+3m+\frac{1}{5}=5\)
<=> \(6m-\frac{6m-2}{5}+3m=5-2-\frac{1}{4}-\frac{1}{5}\)
<=> \(9m-\frac{6m-2}{5}=\frac{51}{20}\)
<=> \(\frac{45m-6m+2}{5}=\frac{51}{20}\)
<=> \(20\left(39m+2\right)=51.5\)
<=> 780m + 40 = 255
<=> 780m = 215
<=> m = \(\frac{43}{156}\)
Cho đa thức A(x)=2x^3-4x^2+mx+3m-19;B(x)=x+2 a)Khi m=30 thực hiện phép chia A(x):B(x) b)Tìm m để A(x) chia hết B(x)