vẽ tam giác ABC vuông tại A,đường cao AH. Hãy tính AB,AC,BC,CH trong các trường hợp sau
1.BH=3cm; AH=4cm;
Cho Tam giác ABC vuông tại A cái đường cao AH
a) Biết AB=6cm, BC=10cm.Hãy tính độ dài các đoạn BH,CH ,AH,AC b)Biết AB = căn 3cm,AC =1cm. Hãy tính độ dài các đoạn BC, AH, BH, CH
c) Biết BH=16a, CH=9a (a>0). Hãy tính độ dài các đoạn AH, BC, AB, AC
d) Biết AB=15a, AC= 20a (a>0). Hãy tính độ dài đoạn thẳng AH
Bài 1:
Áp dụng HTL trong tam giác vuông:
$AB^2=BH.BC$
$\Rightarrow BH=\frac{AB^2}{BC}=\frac{6^2}{10}=3,6$ (cm)
$CH=BC-BH=10-3,6=6,4$ (cm)
Tiếp tục áp dụng HTL:
$AH^2=BH.CH=3,6.6,4$
$\Rightarrow AH=4,8$ (cm)
$AC^2=CH.BC=6,4.10=64$
$\Rightarrow AC=8$ (cm)
Bài 2:
Áp dụng định lý Pitago:
$BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+1^2}=2$ (cm)
$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{\sqrt{3}.1}{2}=\frac{\sqrt{3}}{2}$ (cm)
$BH=\sqrt{AB^2-AH^2}=\sqrt{3-\frac{3}{4}}=\frac{3}{2}$ (cm)
$CH=BC-BH=2-\frac{3}{2}=\frac{1}{2}$ (cm)
3.
$BC=BH+CH=16a+9a=25a$
Áp dụng HTL trong tam giác vuông:
$AH^2=BH.CH=16a.9a=(12a)^2$
$\Rightarrow AH=12a$ (do $a>0$)
$AB=\sqrt{BH^2+AH^2}=\sqrt{(16a)^2+(12a)^2}=20a$
$AC=\sqrt{CH^2+AH^2}=\sqrt{(9a)^2+(12a)^2}=15a$
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ HM ⊥ AB;HN ⊥ AC. Biết AB = 3cm; AC = 4 cm
a) Tính BC, BH, CH, MN
a) Xét tam giác ABC vuông tại A, đường cao AH có:
B C 2 = A B 2 + A C 2 = 25 ⇒ BC = 5(cm)
AB2 = BH.BC ⇒ BH = AB2/BC = 9/5 = 1,8(cm)
BH + CH = BC⇒ CH = BC - BH = 5 - 1,8 = 3,2 (cm)
A H 2 = BH.CH ⇒ AH = B H . C H = 1 , 8 . 3 , 2 = 2,4 (cm)
Xét tứ giác AMHN có:
∠(MAN) = ∠(ANH) = ∠(AMH) = 90 0
⇒ Tứ giác AMHN là hình chữ nhật
⇒ MN = AH = 2,4 (cm)
a. - Áp dụng hệ thức về cạnh và đường cao trong Δ vuông vào ΔABC vuông tại A ta có :
\(AH=\sqrt{CH.BH}=\sqrt{2.4}=2\sqrt{2}\) ( Đ.lý 2 )
- Áp dụng đ.lý Pytago vào \(\Delta AHB\perp H\) ta có :
\(AB=\sqrt{AH^2+BH^2}=\sqrt{\left(2\sqrt{2}\right)^2+4^2}=2\sqrt{6}\)
- \(BC=2+4=6\)
- Theo đ.lý Pytago :
\(AC=\sqrt{BC^2-AB^2}=\sqrt{6^2-\left(2\sqrt{6}\right)^2}=2\sqrt{3}\)
b. - Áp dụng hệ thức...trong Δ vuông ABC ta có :
+ \(BC=\dfrac{AB^2}{BH}=\dfrac{12^2}{6}=24\) ( Đ.lý 1 )
\(\Rightarrow CH=BC-BH=24-6=18\)
+ \(AH=\sqrt{BH.CH}=\sqrt{6.18}=6\sqrt{3}\) ( Đ.'ý 2 )
- Theo đ.lý Pytago ta có :
\(AC=\sqrt{BC^2-AB^2}=\sqrt{24^2-12^2}=12\sqrt{3}\)
a, BC = BH+HC
*\(AB=\sqrt{BH.BC}=\sqrt{4.8}=\sqrt{32}\)
*\(AC=\sqrt{HC.BC}=\sqrt{2.8}=4\)
*\(AH=\sqrt{BH.HC}=\sqrt{4.2}=\sqrt{8}\)
b,Theo định lý pytago ta có:
\(AH=\sqrt{AB^2-BH^2}=\sqrt{12^2-6^2}=6\sqrt{3}\)
*\(BC=\dfrac{AB^2}{BH}=\dfrac{12^2}{6}=2\)
*\(CH=BC-BH=24-6=18\)
\(AC=\sqrt{HC.BC}=\sqrt{18.24}=12\sqrt{3}\)
a, BC = BH+HC
*\(AB=\sqrt{BH.BC}=\sqrt{4.8}=\sqrt{32}\)
*\(AC=\sqrt{HC.BC}=\sqrt{2.8}=4\)
*\(AH=\sqrt{BH.HC}=\sqrt{4.2}=\sqrt{8}\)
b,Theo định lý pytago ta có:
\(AH=\sqrt{AB^2-BH^2}=\sqrt{12^2-6^2}=6\sqrt{3}\)
*\(BC=\dfrac{AB^2}{BH}=\dfrac{12^2}{6}=2\)
*\(CH=BC-BH=24-6=18\)
\(AC=\sqrt{HC.BC}=\sqrt{18.24}=12\sqrt{3}\)
câu 1:Cho tam giác ABC,vuông tại A,đường cáo AH(H thuộc BC).Biết AB=12CM,Ac=5cm.tính BH,CH
Câu 2:cho tam giác ABC vuông tại A,đường cáo AH(H thuộc BC).Biết AB=18cm,BH=6cm.tính đô dài các cạnh AB,AC
Câu 3:cho tam giac abc vuông tại a,biết ab-3cm,ac=4cm,
a.tinh bc
b:kẻ đường cao ah,tính bh
Câu 4:cho tam giác ABC Vuông tại A,biết ab=4cm,đường cao ah=2cm.Tính các góc và các cạnh còn lại của tam giác
Bạn chỉ cần áp dụng hệ thức lượng là đc rồi o0o
Cho tam giác ABC vuông tại A , đường cao AH . Chứng minh rằng 1/AH^2=1/AB^2+1/ac^2
Cho tam giác ABC vuông tại A,đường cao AH.hãy tính vác tỉ số lượng giác của góc B và góc C trong các trường hợp sau: a)AB=13cm;BH=0,5dm b) BH = 3cm;CH= 4cm c)AH = 4cm;BH = 3cm d) CH = 6,25;AH = 5cm
a: AH=căn 13^2-5^2=12cm
CH=12^2/5=28,8cm
BC=28,8+5=33,8cm
AC=căn 28,8*33,8=31,2cm
b: AH=căn 3*4=2căn 3(cm)
AB=căn 3*7=căn 21(cm)
AC=căn 4*7=2căn 7(cm)
c: CH=4^2/3=16/3cm
AB=căn 4^2+3^2=5cm
AC=căn 16/3*25/3=20/3(cm)
cho tam giác ABC vuông tại A, đường cao AH. giải bài toán theo các trường hợp sau
a, cho AH=15cm,BH=25cm. tính AB,AC,BC,CH
b, cho AB=12cm, BH=6cm. tính AH,AC,BC,CH
a) Xét tam giác ABH vuông tại H, ta có:
AB2 = AH2 + HB2 (ĐL Py-ta-go)
AB2 = 152 + 252
AB2 = 225 + 625
AB2 = 850
AB = \(\sqrt{850}\)(cm)
Xét tam giác ABC vuông tại A, có đường cao AH:
=> BA2 = BH.BC
850 = 25.BC
BC = 850:25
BC = 34
Xét tam giác ABC vuông tại A, ta có:
BC2 = AB2 + AC2
342 = 850 + AC2
1156 - 850 = AC2
AC2 = 306
AC = \(\sqrt{306}\)(cm)
Ta có BC = BH + HC
34 = 25 + HC
HC = 34 - 25
HC = 9
b) Xét tam giác ABH vuông tại H, ta có:
AB2 = AH2 + HB2 (ĐL Py-ta-go)
122 = AH2 + 62
144 = AH2 + 36
AH2 = 144 - 36
AH2 = 108
AH = \(\sqrt{108}\)(cm)
Xét tam giác ABC vuông tại A, có đường cao AH:
=> BA2 = BH.BC
122 = 6.BC
144 = 6.BC
BC = 144:6
BC = 24 (cm)
Ta có BC = BH + HC
24 = 6 + HC
HC = 24 - 6
HC = 18
Xét tam giác ABC vuông tại A, ta có:
BC2 = AB2 + AC2 (ĐL Py-ta-go)
242 = 122 + AC2
AC2 = 242 - 122
AC2 = 576 - 144
AC2 = 432
AC = \(\sqrt{432}\)(cm)
cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC), hãy tính sinB và sinC làm tròn kết quả đến chữ số thập phân thứ tự trong các trường hợp sau : BH=3cm, CH=4cm
AH=căn 3*4=2căn 3(cm)
AB=căn 3*7=căn 21(cm)
AC=căn 4*7=căn 28(cm)
sin B=AC/BC=căn 28/7=0,7559
sin C=AB/BC=căn 21/7=0,6547
Cho tam giác ABC vuông tại A, đường cao AH. a) Biết AH = 6cm, BH=4,5cm. Tính AB,AC,BC,HC. b) Biết AB = 6cm, BH=3cm. Tính AH,AC,CH
Cho tam giác ABC vuông tại A, đường cao AH
a, Biết AH = 6cm, BH = 4,5cm. Tính AB, AC, BC, HC
b, Biết AB = 6cm, BH = 3cm. Tính AH và tính chu vi của các tam giác vuông trong hình
a, AB = 7,5cm, AC = 10cm, BC = 12,5cm, HC = 8cm
b, AH = 3 3 cm; P A B C = 18 + 6 3 c m ; P A B H = 9 + 3 3 c m ; P A C H = 9 + 9 3 c m
Cho tam giác ABC vuông tại A, đường cao AH. Giải bài toán trong mỗi trường hợp sau: Cho AH = 16, BH = 25. Tính AB, AC, BC, CH
Theo hệ thức liên hệ giữa đường cao và hình chiếu, ta có: A H 2 = B H . C H
⇒ CH =
BC = BH + CH = 25 + 10,24 = 35,24
Theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu, ta có:
A B 2 = B H . B C ⇒ AB =
≈ 29,68
A C 2 = H C . B C
⇒ AC = ≈ 18,99