vẽ tam giác ABC có AB=3cm; AC=4cm;BC=5cm
a) chứng minh rằng tam giác ABC vuông
b)tính độ dài đường cao AH (H thuộc BC)
c)Tính độ dài trung tuyến AM (M thuộc BC )
d) kẻ phân giác AD . tính diên tích tam giác ADM
Vẽ tam giác ABC có BC = 2cm, AB = AC = 3cm.
Vẽ tam giác ABC có AB = 6cm, AC = 5cm, BC = 3cm.
Vẽ tam giác ABC có B=120 độ , AB=3cm bc=6cm
Vẽ đường cao AH và trung tuyết AM và tam giác ABC
vẽ tam giác ABC có AB=3cm, AC=5cm, BC=6cm. lấy điểm M nằm trong tam giác . vẽ AM, BM và đoạn thẳng MC
vẽ tam giác ABC biết AB=3cm,BC=4cm,AC=5cm. ( Nêu cách vẽ).tam giác ABC có đặc điểm gì ?
ai nhanh tk nhớ giải chi tiết nhé
Cách vẽ:
Vẽ AC = 5 cm.
Vẽ cung tròn (A; 3 cm).
Vẽ cung tròn (C; 4 cm).
Hai cung tròn cắt nhau tại B. Vẽ đoạn thẳng BA, BC ta được tam giác ABC.
Tam giác ABC có 1 góc vuông tại B
tam giác ABC là tam giác vuông do:
AC2 =AB2 +BC2 ( ĐỊNH LÝ PY TA GO)
VẬY tam giác ABC vuông tại B
VẼ chính xác và nêu cách vẽ tam giác ABC có AB=2cm AC=3cm BC=4cm
a)Vẽ tam giác ABC có AB=3cm,BC=4cm,AC=5cm
b)Dùng thước đo góc đo các góc tam giác ABC
Hình vẽ bạn phải tự vẽ được chứ, bài này là bài rất rất rất cơ bản rồi đấy:vv
Ta có tam giác ABC là tam giác vuông
=> SABC=\(\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.4.3=6\) (cm2)
Áp dụng định lý Py-ta-go vào tam giác vuông ABC:
BC2=AB2+AC2=42+32=52
=> BC=5(cm)
Mà SABC=\(\dfrac{1}{2}.AH.BC=\dfrac{1}{2}.AH.5=2,5.AH=6\)
=> AH=2,4(cm)
Vậy...
Có thể do cẩu thả mình sai số chỗ nào đó nhưng hướng làm như này nhé, đáng nhẽ bài này mình không giải đâu:vv
Cho tam giác ABC vuông tại A có AB = 3cm, BC = 5cm. vẽ đường cao AH của tam giác ABC.
a) Chứng minh tg ABC đồng dạng tg HBA
b) Chứng minh AB^2=BC.BH
c) Vẽ đường phân giác BD của tg ABC cắt AH ở E. Tính EA/EA
Cho tam giác ABC vuông tại A có AB = 4cm, AC=3cm, đường cao AH. Vẽ đường tròn tâm C, bán kính CA. Đường thẳng AH cắt đường trong (C) tại điểm thứ 2 là D Cho tam giác ABC vuông tại A có AB=4cm, AC=3cm, đường cao AH. Vẽ đường tròn tâm C, bán kính CA. Đường thẳng AH cắt đường trong (C) tại điểm thứ 2 là D. a) Tính độ dài đoạn thẳng AH b) Chứng minh BD là tiếp tuyến của đường tròn (C) c) Qua C kẻ đường thẳng vuông góc với BC cắt các tia BA,BD thứ tự E,F. Trên cung nhỏ AD của (C) lấy điểm M bất kỳ, qua M kẻ tiếp tuyến với (C) cắt AB,BD lần lượt tại P,Q. Chứng minh EF bình phương =4PE.QF
a:\(BC=\sqrt{4^2+3^2}=5\left(cm\right)\)
AH=4*3/5=2,4cm
b: ΔCAD cân tại C
mà CH là đường cao
nên CH là phân giác của góc ACD
Xét ΔCAB và ΔCDB có
CA=CD
góc ACB=góc DCB
CB chung
Do dó: ΔCAB=ΔCDB
=>góc CDB=90 độ
=>BD là tiếp tuyến của (C)